Cart (0)
  • No items in cart.
Total
$0
There is a technical issue about last added item. You can click "Report to us" button to let us know and we resolve the issue and return back to you or you can continue without last item via click to continue button.
Search book title
Enter keywords for book title search
Search book content
Enter keywords for book content search
Filters:
FORMAT
BOOKS
PACKAGES
EDITION
to
PUBLISHER
(1)
(317)
(572)
(44)
(234)
(969)
(643)
(2114)
(64)
(92448)
(54)
(535)
(117)
(31)
(20)
(19)
(92811)
(3)
(17)
(1)
(351)
(300)
(6217)
(239)
(16)
(5)
(1621)
(16)
(18)
(28)
(4)
 
(6)
(7)
(115)
(3)
(57)
(5)
(5)
(1)
(1)
(2)
(23)
(26)
(27)
(13)
(61)
(24)
(22)
(7)
(8)
(20)
(1)
(3)
(50)
(6)
(31)
CONTENT TYPE
 Act
 Admin Code
 Announcements
 Bill
 Book
 CADD File
 CAN
 CEU
 Charter
 Checklist
 City Code
 Code
 Commentary
 Comprehensive Plan
 Conference Paper
 County Code
 Course
 DHS Documents
 Document
 Errata
 Executive Regulation
 Federal Guideline
 Firm Content
 Guideline
 Handbook
 Interpretation
 Journal
 Land Use and Development
 Law
 Legislative Rule
 Local Amendment
 Local Code
 Local Document
 Local Regulation
 Local Standards
 Manual
 Model Code
 Model Standard
 Notice
 Ordinance
 Other
 Paperback
 PASS
 Periodicals
 PIN
 Plan
 Policy
 Product
 Program
 Provisions
 Requirements
 Revisions
 Rules & Regulations
 Standards
 State Amendment
 State Code
 State Manual
 State Plan
 State Standards
 Statute
 Study Guide
 Supplement
 Technical Bulletin
 All
  • BSI
    BS ISO 21820:2021 Fine ceramics (advanced ceramics, advanced technical ceramics). Ultraviolet photoluminescence image test method for analysing polytypes of boron- and nitrogen-doped SiC crystals
    Edition: 2021
    $418.55
    / user per year

Description of BS ISO 21820:2021 2021

This document specifies a test method for determining the polytypes and their ratios in silicon carbide (SiC) wafers or bulk crystals using ultraviolet photoluminescence (UVPL) imaging. The range of SiC is limited to semiconductor SiC doped with nitrogen and boron to have a deep acceptor level and a shallow donor level, respectively. The SiC wafers or bulk crystals discussed in this document typically show electrical resistivities ranging from 10?3 ohm · cm to 10?2 ohm · cm, applicable to power electronic devices.

This method is applicable to the SiC-crystal 4H, 6H and 15R polytypes that contain boron and nitrogen as acceptor and donor, respectively, at concentrations that produce donor-acceptor pairs (DAPs) to generate UVPL. In 4H-SiC the boron and nitrogen concentrations typically range from 1016 cm?3 to 1018 cm?3. Semi-insulating SiC is not of concern because it usually contains minimal boron and nitrogen; therefore deep level cannot be achieved.



About BSI

BSI Group, also known as the British Standards Institution is the national standards body of the United Kingdom. BSI produces technical standards on a wide range of products and services and also supplies certification and standards-related services to businesses.

X