Cart (0)
  • No items in cart.
Total
$0
There is a technical issue about last added item. You can click "Report to us" button to let us know and we resolve the issue and return back to you or you can continue without last item via click to continue button.
Search book title
Enter keywords for book title search
Search book content
Enter keywords for book content search
Filters:
FORMAT
BOOKS
PACKAGES
EDITION
to
PUBLISHER
(1)
(317)
(572)
(43)
(234)
(969)
(643)
(2114)
(64)
(92448)
(54)
(535)
(117)
(31)
(20)
(19)
(92811)
(3)
(17)
(1)
(351)
(300)
(6023)
(239)
(16)
(5)
(1621)
(16)
(18)
(28)
(4)
 
(6)
(7)
(115)
(3)
(57)
(5)
(5)
(1)
(1)
(2)
(23)
(26)
(27)
(13)
(61)
(24)
(22)
(7)
(8)
(20)
(1)
(3)
(50)
(6)
(31)
CONTENT TYPE
 Act
 Admin Code
 Announcements
 Bill
 Book
 CADD File
 CAN
 CEU
 Charter
 Checklist
 City Code
 Code
 Commentary
 Comprehensive Plan
 Conference Paper
 County Code
 Course
 DHS Documents
 Document
 Errata
 Executive Regulation
 Federal Guideline
 Firm Content
 Guideline
 Handbook
 Interpretation
 Journal
 Land Use and Development
 Law
 Legislative Rule
 Local Amendment
 Local Code
 Local Document
 Local Regulation
 Local Standards
 Manual
 Model Code
 Model Standard
 Notice
 Ordinance
 Other
 Paperback
 PASS
 Periodicals
 PIN
 Plan
 Policy
 Product
 Program
 Provisions
 Requirements
 Revisions
 Rules & Regulations
 Standards
 State Amendment
 State Code
 State Manual
 State Plan
 State Standards
 Statute
 Study Guide
 Supplement
 Technical Bulletin
 All
  • BSI
    24/30487669 DC BS EN 4533-001 Aerospace series - Fibre optic systems - Handbook - Part 001: Termination methods and tools
    Edition: 2024
    $76.00
    / user per year

Description of 24/30487669 DC 2024

1.1 General This document examines the termination of optical fibre cables used in aerospace applications. Termination is the act of installing an optical terminus onto the end of a buffered fibre or fibre optic cable. It encompasses several sequential procedures or practices. Although termini have specific termination procedures, many share common elements and these are discussed in this document. Termination is required to form an optical link between any two network or system components or to join fibre optic links together. The fibre optic terminus features a precision ferrule with a tight tolerance central bore hole to accommodate the optical fibre (suitably bonded in place and highly polished). Accurate alignment with another (mating) terminus is provided within the interconnect (or connector) alignment mechanism. As well as single fibre ferrules, it is noted that multi-fibre ferrules exist (e.g. the MT ferrule), and these are also discussed in this document. Another technology used to connect 2 fibres is the expanded beam. 2 ball lenses are used to expand, collimate and then refocus the light from and to fibres. Contacts are not mated together. It helps reducing the wear between 2 contacts and allows more mating cycles. This technology is less sensitive to misalignments and dust. Losses are remaining more stable than butt joint contact even if the nominal loss is higher. NOTE Current terminology in the aerospace fibre optics community refers to an optical terminus or termini. The term optical contact can be seen in some documents and has a similar meaning. However, the term contact is now generally reserved for electrical interconnection pins. The optical terminus (or termini) is housed within an interconnect (connector is an equivalent term). Interconnects can be single-way or multi-way. The interconnect or connector will generally house the alignment mechanism for the optical termini (usually a precision split-C sleeve made of ceramic or metal). It is important that the reader is aware of these different terms. An optical link can be classified as a length of fibre optic cable terminated at both ends with fibre optic termini. The optical link provides the transmission line between any two components via the optical termini which are typically housed within an interconnecting device (typically a connector) with tight tolerancing within the alignment mechanisms to ensure a low loss light transmission. This document explains the need for high integrity terminations, provides insight into component selection issues and suggests best practice when terminating fibres into termini for high integrity applications. A detailed review of the termination process can be found in Clause 4 of this document and is organized in line with the sequence of a typical termination procedure. The vast number of cable constructions and connectors available make defining a single termination instruction that is applicable to all combinations very difficult. Therefore, this handbook concentrates on the common features of most termination practices and defining best practice for current to near future applications of fibre optics on aircraft. This has limited the studies within this part to currently available ‘avionic’ silica fibre cables and adhesive filled butt-coupled type connectors. Many of the principles described, however, would still be applicable for other termination techniques. Other types of termination are considered further in EN 4533-004. It is noted that the adhesive based pot-and-polish process is applicable to the majority of single-way fibre optic interconnects connectors and termini for multi-way interconnects and connectors. They share this commonality. 1.2 Need for high-integrity terminations In order to implement a fibre optic based system on an aircraft, it is vital to ensure that all the constituent elements of the system will continue to operate, to specification, over the life of the system...

About BSI

BSI Group, also known as the British Standards Institution is the national standards body of the United Kingdom. BSI produces technical standards on a wide range of products and services and also supplies certification and standards-related services to businesses.

X