Cart (0)
  • No items in cart.
Total
$0
There is a technical issue about last added item. You can click "Report to us" button to let us know and we resolve the issue and return back to you or you can continue without last item via click to continue button.
Search book title
Enter keywords for book title search
Search book content
Enter keywords for book content search
Filters:
FORMAT
BOOKS
PACKAGES
EDITION
to
PUBLISHER
(1)
(326)
(573)
(44)
(234)
(969)
(652)
(2114)
(64)
(92448)
(54)
(541)
(117)
(33)
(20)
(19)
(93277)
(3)
(17)
(1)
(351)
(300)
(6217)
(240)
(16)
(5)
(1621)
(16)
(19)
(28)
(4)
 
(6)
(7)
(115)
(3)
(57)
(5)
(5)
(1)
(1)
(2)
(25)
(26)
(27)
(13)
(61)
(24)
(22)
(7)
(8)
(20)
(1)
(3)
(50)
(6)
(31)
CONTENT TYPE
 Act
 Admin Code
 Announcements
 Bill
 Book
 CADD File
 CAN
 CEU
 Charter
 Checklist
 City Code
 Code
 Commentary
 Comprehensive Plan
 Conference Paper
 County Code
 Course
 DHS Documents
 Document
 Errata
 Executive Regulation
 Federal Guideline
 Firm Content
 Guideline
 Handbook
 Interpretation
 Journal
 Land Use and Development
 Law
 Legislative Rule
 Local Amendment
 Local Code
 Local Document
 Local Regulation
 Local Standards
 Manual
 Model Code
 Model Standard
 Notice
 Ordinance
 Other
 Paperback
 PASS
 Periodicals
 PIN
 Plan
 Policy
 Product
 Program
 Provisions
 Requirements
 Revisions
 Rules & Regulations
 Standards
 State Amendment
 State Code
 State Manual
 State Plan
 State Standards
 Statute
 Study Guide
 Supplement
 Technical Bulletin
 All
  • ASTM
    G48-11 : Standard Test Methods for Pitting and Crevice Corrosion Resistance of Stainless Steels and Related Alloys by Use of Ferric Chloride Solution
    Edition: 2011
    $103.58
    Unlimited Users per year

Description of ASTM-G48 2011

ASTM G48 - 11

: Standard Test Methods for Pitting and Crevice Corrosion Resistance of Stainless Steels and Related Alloys by Use of Ferric Chloride Solution

Active Standard ASTM G48 | Developed by Subcommittee: G01.05

Book of Standards Volume: 03.02




ASTM G48

Significance and Use

These test methods describe laboratory tests for comparing the resistance of stainless steels and related alloys to the initiation of pitting and crevice corrosion. The results may be used for ranking alloys in order of increasing resistance to pitting and crevice corrosion initiation under the specific conditions of these methods. Methods A and B are designed to cause the breakdown of Type 304 at room temperature.

The use of ferric chloride solutions is justified because it is related to, but not the same as, that within a pit or crevice site on a ferrous alloy in chloride bearing environments (1, 2) . The presence of an inert crevice former of consistent dimension on a surface is regarded as sufficient specification of crevice geometry to assess relative crevice corrosion susceptibility.

The relative performance of alloys in ferric chloride solution tests has been correlated to performance in certain real environments, such as natural seawater at ambient temperature (3) and strongly oxidizing, low pH, chloride containing environments (4) , but several exceptions have been reported (4-7) .

Methods A, B, C, D, E, and F can be used to rank the relative resistance of stainless steels and nickel base alloys to pitting and crevice corrosion in chloride-containing environments. No statement can be made about resistance of alloys in environments that do not contain chlorides.

Methods A, B, C, D, E, and F were designed to accelerate the time to initiate localized corrosion relative to most natural environments. Consequently, the degree of corrosion damage that occurs during testing will generally be greater than that in natural environments in any similar time period.

No statement regarding localized corrosion propagation can be made based on the results of Methods A, B, C, D, E or F.

Surface preparation can significantly influence results. Therefore, grinding and pickling of the specimen will mean that the results may not be representative of the conditions of the actual piece from which the sample was taken.

Note 1Grinding or pickling on stainless steel surfaces may destroy the passive layer. A 24-h air passivation after grinding or pickling is sufficient to minimize these differences (8) .

The procedures in Methods C, D, E and F for measuring critical pitting corrosion temperature and critical crevice corrosion temperature have no bias because the values are defined only in terms of these test methods.

Note 2When testing as-welded, cylindrical, or other non-flat samples, the standard crevice formers will not provide uniform contact. The use of contoured crevice formers may be considered in such situations, but the use of a pitting test (Practices A, C, or E) should be considered.

1. Scope

1.1 These test methods cover procedures for the determination of the resistance of stainless steels and related alloys to pitting and crevice corrosion (see Terminology G15 ) when exposed to oxidizing chloride environments. Six procedures are described and identified as Methods A, B, C, D, E, and F.

1.1.1 Method A Ferric chloride pitting test.

1.1.2 Method B Ferric chloride crevice test.

1.1.3 Method C Critical pitting temperature test for nickel-base and chromium-bearing alloys.

1.1.4 Method D Critical crevice temperature test for nickel-base and chromium-bearing alloys.

1.1.5 Method E Critical pitting temperature test for stainless steels.

1.1.6 Method F Critical crevice temperature test for stainless steels.

1.2 Method A is designed to determine the relative pitting resistance of stainless steels and nickel-base, chromium-bearing alloys, whereas Method B can be used for determining both the pitting and crevice corrosion resistance of these alloys. Methods C, D, E and F allow for a ranking of alloys by minimum (critical) temperature to cause initiation of pitting corrosion and crevice corrosion, respectively, of stainless steels, nickel-base and chromium-bearing alloys in a standard ferric chloride solution.

1.3 These tests may be used to determine the effects of alloying additives, heat treatment, and surface finishes on pitting and crevice corrosion resistance.

1.4 The values stated in SI units are to be regarded as the standard. Other units are given in parentheses for information only.

1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.


2. Referenced Documents (purchase separately) The documents listed below are referenced within the subject standard but are not provided as part of the standard.

ASTM Standards

A262 Practices for Detecting Susceptibility to Intergranular Attack in Austenitic Stainless Steels

D1193 Specification for Reagent Water

E691 Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method

E1338 Guide for Identification of Metals and Alloys in Computerized Material Property Databases

G1 Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens

G15 Terminology Relating to Corrosion and Corrosion Testing

G46 Guide for Examination and Evaluation of Pitting Corrosion

G107 Guide for Formats for Collection and Compilation of Corrosion Data for Metals for Computerized Database Input


Keywords

crevice corrosion; ferric chloride test solution; localized corrosion; nickel base alloys; pitting; stainless steels: Chloride analysis--metals/alloys; Crevice corrosion; Ferric chloride corrosion test; Multiple crevice assembly (MCA); Nickel alloys (corrosion testing); Pitting corrosion; Stainless steel (corrosion testing); UNS N10276 (Ni-Mo alloy, Hastelloy C276);


ICS Code

ICS Number Code 77.060 (Corrosion of metals)


DOI: 10.1520/G0048-11

ASTM International is a member of CrossRef.

ASTM G48

The following editions for this book are also available...

This book also exists in the following packages...

Year Publisher Title Annual Price
VAR
ASTM
[+] $4,507.56 Buy
VAR
ASTM
[+] $885.59 Buy

Subscription Information

MADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

Some features of MADCAD.com ASTM Standards Subscriptions are:

- Online access: With MADCAD.com’ s web based subscription service no downloads or installations are required. Access ASTM Standards from any browser on your computer, tablet or smart phone.

- Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.

 

For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

About ASTM

ASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide.

X