Cart (0)
  • No items in cart.
Total
$0
There is a technical issue about last added item. You can click "Report to us" button to let us know and we resolve the issue and return back to you or you can continue without last item via click to continue button.
Search book title
Enter keywords for book title search
Search book content
Enter keywords for book content search
Filters:
FORMAT
BOOKS
PACKAGES
EDITION
to
PUBLISHER
(1)
(326)
(572)
(44)
(234)
(969)
(652)
(2114)
(64)
(92448)
(54)
(535)
(117)
(33)
(20)
(19)
(92811)
(3)
(17)
(1)
(351)
(300)
(6217)
(239)
(16)
(5)
(1621)
(16)
(18)
(28)
(4)
 
(6)
(7)
(115)
(3)
(57)
(5)
(5)
(1)
(1)
(2)
(23)
(26)
(27)
(13)
(61)
(24)
(22)
(7)
(8)
(20)
(1)
(3)
(50)
(6)
(31)
CONTENT TYPE
 Act
 Admin Code
 Announcements
 Bill
 Book
 CADD File
 CAN
 CEU
 Charter
 Checklist
 City Code
 Code
 Commentary
 Comprehensive Plan
 Conference Paper
 County Code
 Course
 DHS Documents
 Document
 Errata
 Executive Regulation
 Federal Guideline
 Firm Content
 Guideline
 Handbook
 Interpretation
 Journal
 Land Use and Development
 Law
 Legislative Rule
 Local Amendment
 Local Code
 Local Document
 Local Regulation
 Local Standards
 Manual
 Model Code
 Model Standard
 Notice
 Ordinance
 Other
 Paperback
 PASS
 Periodicals
 PIN
 Plan
 Policy
 Product
 Program
 Provisions
 Requirements
 Revisions
 Rules & Regulations
 Standards
 State Amendment
 State Code
 State Manual
 State Plan
 State Standards
 Statute
 Study Guide
 Supplement
 Technical Bulletin
 All
  • ASTM
    G151-10 Standard Practice for Exposing Nonmetallic Materials in Accelerated Test Devices that Use Laboratory Light Sources
    Edition: 2010
    $103.58
    Unlimited Users per year

Description of ASTM-G151 2010

ASTM G151 - 10

Standard Practice for Exposing Nonmetallic Materials in Accelerated Test Devices that Use Laboratory Light Sources

Active Standard ASTM G151 | Developed by Subcommittee: G03.03

Book of Standards Volume: 14.04




ASTM G151

Significance and Use

Significance :

When conducting exposures in devices that use laboratory light sources, it is important to consider how well the accelerated test conditions will reproduce property changes and failure modes associated with end-use environments for the materials being tested. In addition, it is essential to consider the effects of variability in both the accelerated test and outdoor exposures when setting up exposure experiments and when interpreting the results from accelerated exposure tests.

No laboratory exposure test can be specified as a total simulation of actual use conditions in outdoor environments. Results obtained from these laboratory accelerated exposures can be considered as representative of actual use exposures only when the degree of rank correlation has been established for the specific materials being tested and when the type of degradation is the same. The relative durability of materials in actual use conditions can be very different in different locations because of differences in UV radiation, time of wetness, relative humidity, temperature, pollutants, and other factors. Therefore, even if results from a specific exposure test conducted according to this practice are found to be useful for comparing the relative durability of materials exposed in a particular exterior environment, it cannot be assumed that they will be useful for determining relative durability of the same materials for a different environment.

Even though it is very tempting, calculation of an acceleration factor relating x h or megajoules of radiant exposure in a laboratory accelerated test to y months or years of exterior exposure is not recommended. These acceleration factors are not valid for several reasons.

Acceleration factors are material dependent and can be significantly different for each material and for different formulations of the same material.

Variability in the rate of degradation in both actual use and laboratory accelerated exposure test can have a significant effect on the calculated acceleration factor.

Acceleration factors calculated based on the ratio of irradiance between a laboratory light source and solar radiation, even when identical bandpasses are used, do not take into consideration the effects on a material of irradiance, temperature, moisture, and differences in spectral power distribution between the laboratory light source and solar radiation.

Note 4If use of an acceleration factor is desired in spite of the warnings given in this practice, such acceleration factors for a particular material are only valid if they are based on data from a sufficient number of separate exterior and laboratory accelerated exposures so that results used to relate times to failure in each exposure can be analyzed using statistical methods. An example of a statistical analysis using multiple laboratory and exterior exposures to calculate an acceleration factor is described by J.A. Simms (1) .

There are a number of factors that may decrease the degree of correlation between accelerated tests using laboratory light sources and exterior exposures. More specific information on how each factor may alter stability ranking of materials is given in Appendix X1.

Differences in the spectral distribution between the laboratory light source and solar radiation.

Light intensities higher than those experienced in actual use conditions.

Test conditions where specimens are exposed continuously to light when actual use conditions provide alternate periods of light and dark.

Specimen temperatures higher than those in actual conditions.

Exposure conditions that produce unrealistic temperature differences between light and dark colored specimens.

Exposure conditions that do not have any temperature cycling or that produce temperature cycling, or thermal shock, or both, that is not representative of use conditions.

Unrealistically high or low levels of moisture.

Absence of biological agents or pollutants.

Use of Accelerated Tests with Laboratory Light Sources :

Results from accelerated exposure tests conducted according to this standard are best used to compare the relative performance of materials. A common application is conducting a test to establish that the level of quality of different batches does not vary from a control material with known performance. Comparisons between materials are best made when they are tested at the same time in the same exposure device. Results can be expressed by comparing the exposure time or radiant exposure necessary to change a characteristic property to some specified level.

Reproducibility of test results between laboratories has been shown to be good when the stability of materials is evaluated in terms of performance ranking compared to other materials or to a control; , therefore, exposure of a similar material of known performance (a control) at the same time as the test materials is strongly recommended.

In some applications, weathering reference materials are used to establish consistency of the operating conditions in an exposure test.

Reference materials, for example, blue wool test fabric, also may be used for the purpose of timing exposures. In some cases, a reference material is exposed at the same time as a test material and the exposure is conducted until there is a defined change in property of the reference material. The test material then is evaluated. In some cases, the results for the test material are compared to those for the reference material. These are inappropriate uses of reference materials when they are not sensitive to exposure stresses that produce failure in the test material or when the reference material is very sensitive to an exposure stress that has very little effect on the test material.

Note 5Definitions for control and reference material that are appropriate to weathering tests are found in Terminology G113 .

Note 6Practice G156 describes procedures for selecting and characterizing weathering reference materials used to establish consistency of operating conditions in a laboratory accelerated test.

Note 7Results from accelerated exposure tests should only be used to establish a pass/fail approval of materials after a specific time of exposure to a prescribed set of conditions when the variability in the exposure and property measurement procedure has been quantified so that statistically significant pass/fail judgments can be made.

1. Scope

1.1 This practice provides general procedures to be used when exposing nonmetallic materials in accelerated test devices that use laboratory light sources. Detailed information regarding procedures to be used for specific devices are found in standards describing the particular device being used. For example, detailed information covering exposures in devices that use open flame carbon arc, enclosed carbon arc, xenon arc and fluorescent UV light source are found in Practices G152 , G153 , G154 , and G155 respectively.

Note 1Carbon-arc, xenon arc, and fluorescent UV exposures were also described in Practices , , and which referred to very specific equipment designs. Practices G152 , G153 , and G154 , and G155 are performance based standards that replace Practices , , and .

1.2 This practice also describes general performance requirements for devices used for exposing nonmetallic materials to laboratory light sources. This information is intended primarily for producers of laboratory accelerated exposure devices.

1.3 This practice provides information on the use and interpretation of data from accelerated exposure tests. Specific information about methods for determining the property of a nonmetallic material before and after exposure are found in standards describing the method used to measure each property. Information regarding the reporting of results from exposure testing of plastic materials is described in Practice D5870 .

Note 2Guide G141 provides information for addressing variability in exposure testing of nonmetallic materials. Guide G169 provides information for application of statistics to exposure test results

Note 3This standard is technically equivalent to ISO 4892, Part 1.

1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.


2. Referenced Documents (purchase separately) The documents listed below are referenced within the subject standard but are not provided as part of the standard.

ASTM Standards

D618 Practice for Conditioning Plastics for Testing

D3924 Specification for Environment for Conditioning and Testing Paint, Varnish, Lacquer, and Related Materials

D5870 Practice for Calculating Property Retention Index of Plastics

E41 Terminology Relating To Conditioning

E171 Practice for Conditioning and Testing Flexible Barrier Packaging

E644 Test Methods for Testing Industrial Resistance Thermometers

E691 Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method

E772 Terminology of Solar Energy Conversion

E839 Test Methods for Sheathed Thermocouples and Sheathed Thermocouple Cable

G23 Practice for Operating Light-Exposure Apparatus (Carbon-Arc Type) With and Without Water for Exposure of Nonmetallic Materials

G26 Practice for Operating Light-Exposure Apparatus (Xenon-Arc Type) With and Without Water for Exposure of Nonmetallic Materials (Discontinued 2001)

G53 Practice for Operating Light-and Water-Exposure Apparatus (Fluorescent UV-Condensation Type) for Exposure of Nonmetallic Materials

G113 Terminology Relating to Natural and Artificial Weathering Tests of Nonmetallic Materials

G130 Test Method for Calibration of Narrow- and Broad-Band Ultraviolet Radiometers Using a Spectroradiometer

G141 Guide for Addressing Variability in Exposure Testing of Nonmetallic Materials

G147 Practice for Conditioning and Handling of Nonmetallic Materials for Natural and Artificial Weathering Tests

G152 Practice for Operating Open Flame Carbon Arc Light Apparatus for Exposure of Nonmetallic Materials

G153 Practice for Operating Enclosed Carbon Arc Light Apparatus for Exposure of Nonmetallic Materials

G154 Practice for Operating Fluorescent Light Apparatus for UV Exposure of Nonmetallic Materials

G155 Practice for Operating Xenon Arc Light Apparatus for Exposure of Non-Metallic Materials

G156 Practice for Selecting and Characterizing Weathering Reference Materials

G169 Guide for Application of Basic Statistical Methods to Weathering Tests

G177 Tables for Reference Solar Ultraviolet Spectral Distributions: Hemispherical on 37 Tilted Surface

CIE Document

CIE Publication Numb Technical Report--Solar Spectral Irradiance Available from the Commission Internationale de LEclairage, CIE, Central Bureau, Kegelgasse 27, A-1030 Vienna, Austria or the U.S. National Committee for CIE, National Institute for Science and Technology, Gaithersburg, MD.

ISO Standards

ISO 9370 Plastics: Instrumental Determination of Radiant Exposure in Weathering Tests--General Guidance and Basic Test Method

Keywords

accelerated; durability; exposure; light; temperature; weathering; ultraviolet; UV-radiation; Durability; Laboratory aging/weathering; Light exposure; Accelerated weathering; Lightfastness; Nonmetallic materials; Weathering;


ICS Code

ICS Number Code 19.040 (Environmental testing)


DOI: 10.1520/G0151-10

ASTM International is a member of CrossRef.

ASTM G151

The following editions for this book are also available...

This book also exists in the following packages...

Year Publisher Title Annual Price
VAR
ASTM
[+] $3,716.67 Buy
VAR
ASTM
[+] $3,560.85 Buy
VAR
ASTM
[+] $905.74 Buy

Subscription Information

MADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

Some features of MADCAD.com ASTM Standards Subscriptions are:

- Online access: With MADCAD.com’ s web based subscription service no downloads or installations are required. Access ASTM Standards from any browser on your computer, tablet or smart phone.

- Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.

 

For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

About ASTM

ASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide.

X