Cart (0)
  • No items in cart.
Total
$0
There is a technical issue about last added item. You can click "Report to us" button to let us know and we resolve the issue and return back to you or you can continue without last item via click to continue button.
Search book title
Enter keywords for book title search
Search book content
Enter keywords for book content search
Filters:
FORMAT
BOOKS
PACKAGES
EDITION
to
PUBLISHER
(1)
(317)
(572)
(43)
(234)
(969)
(643)
(2114)
(64)
(92448)
(54)
(535)
(117)
(31)
(20)
(19)
(92811)
(3)
(17)
(1)
(351)
(300)
(6217)
(239)
(16)
(5)
(1621)
(16)
(18)
(28)
(4)
 
(6)
(7)
(115)
(3)
(57)
(5)
(5)
(1)
(1)
(2)
(23)
(26)
(27)
(13)
(61)
(24)
(22)
(7)
(8)
(20)
(1)
(3)
(50)
(6)
(31)
CONTENT TYPE
 Act
 Admin Code
 Announcements
 Bill
 Book
 CADD File
 CAN
 CEU
 Charter
 Checklist
 City Code
 Code
 Commentary
 Comprehensive Plan
 Conference Paper
 County Code
 Course
 DHS Documents
 Document
 Errata
 Executive Regulation
 Federal Guideline
 Firm Content
 Guideline
 Handbook
 Interpretation
 Journal
 Land Use and Development
 Law
 Legislative Rule
 Local Amendment
 Local Code
 Local Document
 Local Regulation
 Local Standards
 Manual
 Model Code
 Model Standard
 Notice
 Ordinance
 Other
 Paperback
 PASS
 Periodicals
 PIN
 Plan
 Policy
 Product
 Program
 Provisions
 Requirements
 Revisions
 Rules & Regulations
 Standards
 State Amendment
 State Code
 State Manual
 State Plan
 State Standards
 Statute
 Study Guide
 Supplement
 Technical Bulletin
 All
  • ASTM
    F3442/F3442M-23 Standard Specification for Detect and Avoid System Performance Requirements (Redline)
    Edition: 2023
    $134.78
    Unlimited Users per year

Description of ASTM-F3442/F3442M 2023

ASTM F3442/F3442M-23

Redline Standard: Standard Specification for Detect and Avoid System Performance Requirements




ASTM F3442/F3442M

Scope

1.1 This specification applies to uncrewed aircraft (UA) with a maximum dimension (for example, wingspan, disc diameter) 25 ft, operating at airspeeds below 100 kts, and of any configuration or category. It is meant to be applied in a “lower risk” [low- and medium-risk airspace as described by Joint Authorities for Rulemaking on Unmanned Systems (JARUS)] airspace environment with assumed infrequent encounters with crewed aircraft; this is typically in classes G and E airspace [below about 1200 ft above ground level (AGL)], Class B, C, D (below approximately 400 ft to 500 ft AGL) below obstacle clearance surface (FAA Order 8260.3, as amended) or within low altitude authorization and notification capability (LAANC) designated areas below the altitude specified in the facility map.

1.1.1 Traffic encountered is expected to be mixed cooperative and non-cooperative traffic, instrument flight rules (IFR) and visual flight rules (VFR), and to mostly include low-altitude aircraft—including rotorcraft, small general aviation, crop dusters, ultralights, and light sport aircraft, but not transport category aircraft.

1.1.2 This includes, but is not limited to, airspace where nearly all aircraft are required2 to be cooperative (for example, within the Mode C veil in the United States).

1.2 Ultimate determination of applicability will be governed by the appropriate civil aviation authority (CAA).

1.3 This specification assumes no air traffic control (ATC) separation services are provided to the UA.

1.4 While some architectures may have limitations due to external conditions, this specification applies to daytime and nighttime, as well as visual meteorological conditions (VMC) and instrument meteorological conditions (IMC). The system integrator shall document system limitation (that is, due to operating environments and/or minimum altitudes at which the air picture is no longer valid).

1.5 This specification is applicable to the avoidance of crewed aircraft by uncrewed aircraft systems (UAS), not UA-to-UA or terrain/obstacle/airspace avoidance (both to be addressed in future efforts). Likewise, birds or natural hazard (for example, weather, clouds) avoidance requirements are not addressed.

1.6 This specification does not define a specific detect and avoid (DAA) architecture3 and is architecture agnostic. It will, however, define specific safety performance thresholds for a DAA system to meet in order to ensure safe operation.

1.7 This specification addresses the definitions and methods for demonstrating compliance to this specification, and the many considerations (for example, detection range, required timeline to meet well clear, and near mid-air collision (NMAC) safety targets) affecting DAA system integration.

1.8 The specification highlights how different aspects of the system are designed and interrelated, and how they affect the greater UAS system-of-systems to enable a developer to make informed decisions within the context of their specific UAS application(s).

1.9 It is expected this specification will be used by diverse contributors or actors including, but not limited to:

1.9.1 DAA system designers and integrators,

1.9.2 Sensor suppliers,

1.9.3 UA developers,

1.9.4 Control Station designers,

1.9.5 UAS service suppliers, and

1.9.6 Flight control designers.

1.10 Except for DAA system integrators for whom all the “shalls” in this specification apply, not all aspects of this specification are relevant to all actors/contributors. In some instances, the actor most likely to satisfy a requirement has been identified in brackets after the requirement; this is for informative purposes only and does not indicate that only that actor may fulfill that requirement. Where not specified, the system integrator/applicant is assumed to be the primary actor; in all cases, the system integrator/applicant is responsible for all requirements and may choose to delegate requirements as is suitable to the system design. Nonetheless, familiarity with the entire specification will inform all actors/contributors of how their contributions affect the overall DAA capability and is strongly recommended.

1.11 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.

1.12 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.

1.13 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.


Keywords


ICS Code

ICS Number Code 03.220.50 (Air transport)


DOI: 10.1520/F3442_F3442M-23

This book also exists in the following packages...

Year Publisher Title Annual Price
VAR
ASTM
[+] $532.97 Buy
VAR
ASTM
[+] $7,461.55 Buy

Subscription Information

MADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

Some features of MADCAD.com ASTM Standards Subscriptions are:

- Online access: With MADCAD.com’ s web based subscription service no downloads or installations are required. Access ASTM Standards from any browser on your computer, tablet or smart phone.

- Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.

 

For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

About ASTM

ASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide.

X