Cart (0)
  • No items in cart.
Total
$0
There is a technical issue about last added item. You can click "Report to us" button to let us know and we resolve the issue and return back to you or you can continue without last item via click to continue button.
Search book title
Enter keywords for book title search
Search book content
Enter keywords for book content search
Filters:
FORMAT
BOOKS
PACKAGES
EDITION
to
PUBLISHER
(1)
(317)
(572)
(44)
(234)
(969)
(643)
(2114)
(64)
(92448)
(54)
(535)
(117)
(31)
(20)
(19)
(92811)
(3)
(17)
(1)
(351)
(300)
(6217)
(239)
(16)
(5)
(1621)
(16)
(18)
(28)
(4)
 
(6)
(7)
(115)
(3)
(57)
(5)
(5)
(1)
(1)
(2)
(23)
(26)
(27)
(13)
(61)
(24)
(22)
(7)
(8)
(20)
(1)
(3)
(50)
(6)
(31)
CONTENT TYPE
 Act
 Admin Code
 Announcements
 Bill
 Book
 CADD File
 CAN
 CEU
 Charter
 Checklist
 City Code
 Code
 Commentary
 Comprehensive Plan
 Conference Paper
 County Code
 Course
 DHS Documents
 Document
 Errata
 Executive Regulation
 Federal Guideline
 Firm Content
 Guideline
 Handbook
 Interpretation
 Journal
 Land Use and Development
 Law
 Legislative Rule
 Local Amendment
 Local Code
 Local Document
 Local Regulation
 Local Standards
 Manual
 Model Code
 Model Standard
 Notice
 Ordinance
 Other
 Paperback
 PASS
 Periodicals
 PIN
 Plan
 Policy
 Product
 Program
 Provisions
 Requirements
 Revisions
 Rules & Regulations
 Standards
 State Amendment
 State Code
 State Manual
 State Plan
 State Standards
 Statute
 Study Guide
 Supplement
 Technical Bulletin
 All
  • ASTM
    F3336-22 Standard Practice for Lipid Preconditioning of Ultra-High-Molecular-Weight Polyethylene for Accelerated Aging
    Edition: 2022
    $78.62
    Unlimited Users per year

Description of ASTM-F3336 2022

ASTM F3336-22

Active Standard: Standard Practice for Lipid Preconditioning of Ultra-High-Molecular-Weight Polyethylene for Accelerated Aging




ASTM F3336

Scope

1.1 It is the intent of this practice to permit an investigator to incorporate lipids found in the synovial environment into polymeric specimens. This can be used as a preconditioning step to evaluate the oxidative stability of ultra-high-molecular-weight polyethylene (UHMWPE) materials. This practice describes a laboratory procedure for preconditioning of UHMWPE specimens.

1.2 The preconditioned UHMWPE can be aged at elevated temperature and at elevated oxygen pressure following methods of accelerated aging described in Practice F2003, to accelerate oxidation of the material and thereby allow for the evaluation of its long-term chemical stability.

1.3 The preconditioned UHMWPE can be tested without further aging using a method to evaluate oxidative stability such as oxidation induction time as described in Test Method D3895.

1.4 The methods of this practice may be used on any type of UHMWPE material intended for use in total joint arthroplasty in a synovial joint (for example, conventional, cross-linked, antioxidant stabilized, etc.). See Appendix X1.

1.5 Although the preconditioning method followed by accelerated aging described by this practice will permit an investigator to compare the oxidative stability of different UHMWPE materials, it is recognized that this method is not known to simulate the degradative mechanisms for an implant during real-time shelf aging or in vivo. The described methods have not been evaluated for mechanical testing under cyclic loading.

1.6 The preconditioning and accelerated aging methods specified herein are intended to rank the resistance to oxidation of materials as a result of the absorption of lipids, which may occur in UHMWPE following implantation, and to determine susceptibility to oxidative changes. The methods have not been evaluated for use in preconditioning of UHMWPE components for subsequent testing of mechanical or wear properties. Procedure A should not be used for preconditioning of UHMWPE components for subsequent testing of mechanical or wear properties.

1.7 The values stated in SI units are to be regarded as standard. The values given in parentheses are mathematical conversions to inch-pound units that are for information only and are not considered standard.

1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.

1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.


Keywords

aging; oxidation; preconditioning; stability; UHMWPE; ultra-high molecular weight polyethylene;


ICS Code

ICS Number Code 83.080.20 (Thermoplastic materials)


DOI: 10.1520/F3336-22

This book also exists in the following packages...

Year Publisher Title Annual Price
VAR
ASTM
[+] $1,185.83 Buy
VAR
ASTM
[+] $1,618.05 Buy

Subscription Information

MADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

Some features of MADCAD.com ASTM Standards Subscriptions are:

- Online access: With MADCAD.com’ s web based subscription service no downloads or installations are required. Access ASTM Standards from any browser on your computer, tablet or smart phone.

- Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.

 

For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

About ASTM

ASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide.

X