Cart (0)
  • No items in cart.
Total
$0
There is a technical issue about last added item. You can click "Report to us" button to let us know and we resolve the issue and return back to you or you can continue without last item via click to continue button.
Search book title
Enter keywords for book title search
Search book content
Enter keywords for book content search
Filters:
FORMAT
BOOKS
PACKAGES
EDITION
to
PUBLISHER
(1)
(317)
(572)
(44)
(234)
(969)
(643)
(2114)
(64)
(92448)
(54)
(535)
(117)
(31)
(20)
(19)
(92811)
(3)
(17)
(1)
(351)
(300)
(6217)
(239)
(16)
(5)
(1621)
(16)
(18)
(28)
(4)
 
(6)
(7)
(115)
(3)
(57)
(5)
(5)
(1)
(1)
(2)
(23)
(26)
(27)
(13)
(61)
(24)
(22)
(7)
(8)
(20)
(1)
(3)
(50)
(6)
(31)
CONTENT TYPE
 Act
 Admin Code
 Announcements
 Bill
 Book
 CADD File
 CAN
 CEU
 Charter
 Checklist
 City Code
 Code
 Commentary
 Comprehensive Plan
 Conference Paper
 County Code
 Course
 DHS Documents
 Document
 Errata
 Executive Regulation
 Federal Guideline
 Firm Content
 Guideline
 Handbook
 Interpretation
 Journal
 Land Use and Development
 Law
 Legislative Rule
 Local Amendment
 Local Code
 Local Document
 Local Regulation
 Local Standards
 Manual
 Model Code
 Model Standard
 Notice
 Ordinance
 Other
 Paperback
 PASS
 Periodicals
 PIN
 Plan
 Policy
 Product
 Program
 Provisions
 Requirements
 Revisions
 Rules & Regulations
 Standards
 State Amendment
 State Code
 State Manual
 State Plan
 State Standards
 Statute
 Study Guide
 Supplement
 Technical Bulletin
 All
  • ASTM
    F1526-95(2000) Standard Test Method for Measuring Surface Metal Contamination on Silicon Wafers by Total Reflection X-Ray Fluorescence Spectroscopy (Withdrawn 2003)
    Edition: 2000
    $93.60
    Unlimited Users per year

Description of ASTM-F1526 2000

ASTM F1526-95-Reapproved2000

Withdrawn Standard: Standard Test Method for Measuring Surface Metal Contamination on Silicon Wafers by Total Reflection X-Ray Fluorescence Spectroscopy (Withdrawn 2003)




ASTM F1526

Scope

This standard was transferred to SEMI (www.semi.org) May 2003

1.1 This test method covers the quantitative determination of elemental areal density on the surface of polished single crystal silicon substrates using total reflection X-ray fluorescence spectroscopy (TXRF) with a monochromatic X-ray source.

1.2 This test method can be used for both n-type and p-type silicon.

1.3 This test method can be used to detect surface elemental contamination that is within the analyte depth of approximately 5 nm for highly mirror-polished silicon wafers. The analytic depth increases with surface roughness.

1.4 This test method is especially useful for determining the surface elemental areal densities in the native oxide or in chemically grown oxide of polished silicon wafers after cleaning.

1.5 This test method is useful for elemental areal densities between 109 and 1015 atoms/cm2 within the measurement area. See Annex A1 for a discussion of the relationship between repeatability and detection limit.

1.6 This test method is useful for detecting elements with atomic number between 16 (S) and 92 (U), depending upon the X-ray source provided in the instrument. This test is especially useful for detecting the following metals or elements: potassium, calcium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, arsenic, molybdenum, palladium, silver, tin, tantalum, tungsten, platinum, gold, mercury, and lead.

1.7 The detection limit depends upon atomic number, excitation energy, photon flux of excitation X-rays, instrumental background, integration time, and blank value. For constant instrumental parameters, the interference-free detection limits vary over two orders of magnitude as a function of atomic number of the element.

1.8 This test method is nondestructive.

1.9 This test method is complementary to a variety of other test methods:

1.9.1 Electron spectroscopy for chemical analysis that can detect elemental surface areal densities down to the order of 1013 atoms/cm2.

1.9.2 Auger electron spectroscopy that can detect elemental surface areal densities down to the order of 102 atoms/cm 2.

1.9.3 Nitrogen-beam Rutherford backscattering spectrometry that can detect down to 1010 atoms/cm2 for some elements but cannot mass resolve heavy elements of nearby atomic number.

1.9.4 Secondary ion mass spectrometry that can detect low-atomic-number elemental areal densities in the range of 108 to 1012 atoms/cm2 but cannot provide adequate detection limits for transition metals with atomic number between 22 titanium and 30 zinc. This method is destructive.

1.9.5 Vapor phase decomposition (VPD) of surface metals followed by atomic absorption spectroscopy (AAS), where the metal detection limits are from 10 8 to 1011 atoms/cm2, but there is no spatial information available and the analysis time is longer than TXRF. This method is destructive.

1.10 This test method uses X-radiation; it is absolutely necessary to avoid personal exposure to X-rays. It is especially important to keep hands or fingers out of the path of the X rays and to protect the eyes from scattered secondary radiation. The use of commercial film badge or dosimeter service is recommended, together with periodic checks of the radiation level at the hand and body positions with a Geiger-Muller counter calibrated with a standard nuclear source. The present maximum permissible dose for total body exposure of an individual to external X-radiation of quantum energy less than 3 MeV over an indefinite period is 1.25 R (3.22 10-4 C/kg) per calendar quarter (equivalent to 0.6 mR/h (1.5 10-7 C/kg-h) as established in the Code of Federal Regulations, Title 10, Part 20. The present maximum permissible dose of hand and forearm exposure under the same conditions is 18.75 R (4.85 X 10 -3 C/kg) per calendar quarter (equivalent to 9.3 mR/h (2.4 10 -6 C/kg-h)). Besides the above stated regulations, various other government and regulatory organizations have their own safety requirements. It is the responsibility of the user to make sure that the equipment and the conditions under which it is used meet these regulations (see 1.11).

1.11 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.


Keywords

contamination; metals; silicone; surface; TXRF; X-ray fluorescence


ICS Code

ICS Number Code 29.045 (Semiconducting materials)


DOI: 10.1520/F1526-95R00

This book also exists in the following packages...

Year Publisher Title Annual Price
VAR
ASTM
[+] $971.23 Buy
VAR
ASTM
[+] $2,452.26 Buy

Subscription Information

MADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

Some features of MADCAD.com ASTM Standards Subscriptions are:

- Online access: With MADCAD.com’ s web based subscription service no downloads or installations are required. Access ASTM Standards from any browser on your computer, tablet or smart phone.

- Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.

 

For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

About ASTM

ASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide.

X