Cart (0)
  • No items in cart.
Total
$0
There is a technical issue about last added item. You can click "Report to us" button to let us know and we resolve the issue and return back to you or you can continue without last item via click to continue button.
Search book title
Enter keywords for book title search
Search book content
Enter keywords for book content search
Filters:
FORMAT
BOOKS
PACKAGES
EDITION
to
PUBLISHER
(1)
(326)
(572)
(44)
(234)
(969)
(652)
(2114)
(64)
(92448)
(54)
(535)
(117)
(33)
(20)
(19)
(93277)
(3)
(17)
(1)
(351)
(300)
(6217)
(239)
(16)
(5)
(1621)
(16)
(18)
(28)
(4)
 
(6)
(7)
(115)
(3)
(57)
(5)
(5)
(1)
(1)
(2)
(23)
(26)
(27)
(13)
(61)
(24)
(22)
(7)
(8)
(20)
(1)
(3)
(50)
(6)
(31)
CONTENT TYPE
 Act
 Admin Code
 Announcements
 Bill
 Book
 CADD File
 CAN
 CEU
 Charter
 Checklist
 City Code
 Code
 Commentary
 Comprehensive Plan
 Conference Paper
 County Code
 Course
 DHS Documents
 Document
 Errata
 Executive Regulation
 Federal Guideline
 Firm Content
 Guideline
 Handbook
 Interpretation
 Journal
 Land Use and Development
 Law
 Legislative Rule
 Local Amendment
 Local Code
 Local Document
 Local Regulation
 Local Standards
 Manual
 Model Code
 Model Standard
 Notice
 Ordinance
 Other
 Paperback
 PASS
 Periodicals
 PIN
 Plan
 Policy
 Product
 Program
 Provisions
 Requirements
 Revisions
 Rules & Regulations
 Standards
 State Amendment
 State Code
 State Manual
 State Plan
 State Standards
 Statute
 Study Guide
 Supplement
 Technical Bulletin
 All
  • ASTM
    E496-09 Standard Test Method for Measuring Neutron Fluence and Average Energy from 3H(d,n)4He Neutron Generators by Radioactivation Techniques 1
    Edition: 2009
    $103.58
    Unlimited Users per year

Description of ASTM-E496 2009

ASTM E496 - 09

Standard Test Method for Measuring Neutron Fluence and Average Energy from 3 H( d,n ) 4 He Neutron Generators by Radioactivation Techniques 1

Active Standard ASTM E496 | Developed by Subcommittee: E10.07

Book of Standards Volume: 12.02




ASTM E496

Significance and Use

Refer to Practice E 261 for a general discussion of the measurement of fast-neutron fluence rates with threshold detectors.

Refer to Test Method E 265 for a general discussion of the measurement of fast-neutron fluence rates by radioactivation of sulfur-32.

Reactions used for the activity measurements can be chosen to provide a convenient means for determining the absolute fluence rates of 14-MeV neutrons obtained with 3 H( d,n ) 4 He neutron generators over a range of irradiation times from seconds to approximately 100 days. High purity threshold sensors referenced in this test method are readily available.

The neutron-energy spectrum must be known in order to measure fast-neutron fluence using a single threshold detector. Neutrons produced by bombarding a tritiated target with deuterons are commonly referred to as 14-MeV neutrons; however, they can have a range of energies depending on: ( 1 ) the angle of neutron emission with respect to the deuteron beam, ( 2 ) the kinetic energy of the deuterons, and ( 3 ) the target thickness. In most available neutron generators of the Cockroft-Walton type, a thick target is used to obtain high-neutron yields. As deuterons penetrate through the surface and move into the bulk of the thick target, they lose energy, and interactions occurring deeper within the target produce neutrons with correspondingly lower energy.

Wide variations in neutron energy are not generally encountered in commercially available neutron generators of the Cockroft-Walton type. Figs. 1 and 2 (1) show the variation of the zero degree 3 H( d,n ) 4 He neutron production cross section with energy, and clearly indicate that maximum neutron yield is obtained with deuterons having energies near the 107 keV resonance. Since most generators are designed for high yield, the deuteron energy is typically about 200 keV, giving a range of neutron energies from approximately 14 to 15 MeV. The differential center-of-mass cross section is typically parameterized as a summation of Legendre polynomials. Figs. 3 and 4 (1,2) show how the neutron yield varies with the emission angle in the laboratory system. The insert in Fig. 4 shows how the magnitude, A 1 , of the P 1 ( ? ) term, and hence the asymmetry in the differential cross section grows with increasing energy of the incident deuteron. The nonrelativistic kinematics (valid for E d < 20 MeV) for the 3 H( d,n ) 4 He reaction show that:



where:
E n = the neutron energy in MeV,
E d = the incident deuteron energy in MeV, and
? = the neutron emission angle with respect to the incident deuteron in the laboratory system.

Fig. 5 (2) shows how the neutron energy depends upon the angle of scattering in the laboratory coordinate system when the incident deuteron has an energy of 150 keV and is incident on a thick and a thin tritiated target. For thick targets, the incident deuteron loses energy as it penetrates the target and produces neutrons of lower energy. A thick target is defined as a target thick enough to completely stop the incident deuteron. The two curves in Fig. 5, for both thick and thin targets, come from different sources. The dashed line calculations come from Ref (3) ; the solid curve calculations come from Ref (4) ; and the measured data come from Ref (5) . The dash-dot curve and the right-hand axis gives the difference between the calculated neutron energies for thin and thick targets. Computer codes are available to assist in calculating the expected thick and thin target yield and neutron spectrum for various incident deuteron energies (6) .

The Q-value for the primary 3 H( d,n ) 4 He reaction is + 17.59 MeV. When the incident deuteron energy exceeds 3.71 MeV and 4.92 MeV, the break-up reactions 3 H( d,np ) 3 H and 3 H( d ,2 n ) 3 He, respectively, become energetically possible. Thus, at high deuteron energies (>3.71 MeV) this reaction is no longer monoenergetic. Monoenergetic neutron beams with energies from about 14.8 to 20.4 MeV can be produced by this reaction at forward laboratory angles (7) .

It is recommended that the dosimetry sensors be fielded in the exact positions that will be used for the customers of the 14-MeV neutron source. There are a number of factors that can affect the monochromaticity or energy spread of the neutron beam (7,8) . These factors include the energy regulation of the incident deuteron energy, energy loss in retaining windows if a gas target is used or energy loss within the target if a solid tritiated target is used, the irradiation geometry, and background neutrons from scattering with the walls and floors within the irradiation chamber.


FIG. 1 Variation of 0 Degree 3 H( d,n ) 4 He Differential Cross Section with Incident Deuteron Energy (1)


FIG. 2 Variation of 0 Degree 3 H( d,n ) 4 He Differential Cross Section with Incident Deuteron Energy (1)


FIG. 3 Energy and Angle Dependence of the 3 H( d,n ) 4 He Differential Cross Section (1)


FIG. 4 Change in Neutron Energy from 3 H( d,n ) 4 He Reaction with Laboratory Emission Angle (2)


FIG. 5 Dependence of 3 H( d,n ) 4 He Neutron Energy on Angle (2)

1. Scope

1.1 This test method covers a general procedure for the measurement of the fast-neutron fluence rate produced by neutron generators utilizing the 3 H( d,n ) 4 He reaction. Neutrons so produced are usually referred to as 14-MeV neutrons, but range in energy depending on a number of factors. This test method does not adequately cover fusion sources where the velocity of the plasma may be an important consideration.

1.2 This test method uses threshold activation reactions to determine the average energy of the neutrons and the neutron fluence at that energy. At least three activities, chosen from an appropriate set of dosimetry reactions, are required to characterize the average energy and fluence. The required activities are typically measured by gamma ray spectroscopy.

1.3 The measurement of reaction products in their metastable states is not covered. If the metastable state decays to the ground state, the ground state reaction may be used.

1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.

1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.


2. Referenced Documents (purchase separately) The documents listed below are referenced within the subject standard but are not provided as part of the standard.

ASTM Standards

E170 Terminology Relating to Radiation Measurements and Dosimetry

E181 Test Methods for Detector Calibration and Analysis of Radionuclides

E261 Practice for Determining Neutron Fluence, Fluence Rate, and Spectra by Radioactivation Techniques

E265 Test Method for Measuring Reaction Rates and Fast-Neutron Fluences by Radioactivation of Sulfur-32

E720 Guide for Selection and Use of Neutron Sensors for Determining Neutron Spectra Employed in Radiation-Hardness Testing of Electronics

International Commission on Radiation Units and Measurements (ICRU) Reports

ICRUReport26N Dosimetry for Biology and Medicine

ISO Standard

GuidetotheExpression

NIST Document

TechnicalNote1297&md for Evaluating and Expressing the Uncertainty of NIST Measurement Results

Keywords

14-MeV; DT; neutron activation; neutron generator; neutron metrology
; Neutron activation reactions; Neutron flux/fluence; Radioactivation--fast neutron flux; Threshold detectors--14 MeV; Fast neutron flux/fluence; Fluence;


ICS Code

ICS Number Code 17.240 (Radiation measurements); 27.120.30 (Fissile materials and nuclear fuel technology)


DOI: 10.1520/E0496-09

ASTM International is a member of CrossRef.

ASTM E496

The following editions for this book are also available...

This book also exists in the following packages...

Year Publisher Title Annual Price
VAR
ASTM
[+] $1,737.94 Buy
VAR
ASTM
[+] $1,164.67 Buy

Subscription Information

MADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

Some features of MADCAD.com ASTM Standards Subscriptions are:

- Online access: With MADCAD.com’ s web based subscription service no downloads or installations are required. Access ASTM Standards from any browser on your computer, tablet or smart phone.

- Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.

 

For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

About ASTM

ASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide.

X