Cart (0)
  • No items in cart.
Total
$0
There is a technical issue about last added item. You can click "Report to us" button to let us know and we resolve the issue and return back to you or you can continue without last item via click to continue button.
Search book title
Enter keywords for book title search
Search book content
Enter keywords for book content search
Filters:
FORMAT
BOOKS
PACKAGES
EDITION
to
PUBLISHER
(1)
(317)
(572)
(44)
(234)
(969)
(643)
(2114)
(64)
(92448)
(54)
(535)
(117)
(31)
(20)
(19)
(92811)
(3)
(17)
(1)
(351)
(300)
(6217)
(239)
(16)
(5)
(1621)
(16)
(18)
(28)
(4)
 
(6)
(7)
(115)
(3)
(57)
(5)
(5)
(1)
(1)
(2)
(23)
(26)
(27)
(13)
(61)
(24)
(22)
(7)
(8)
(20)
(1)
(3)
(50)
(6)
(31)
CONTENT TYPE
 Act
 Admin Code
 Announcements
 Bill
 Book
 CADD File
 CAN
 CEU
 Charter
 Checklist
 City Code
 Code
 Commentary
 Comprehensive Plan
 Conference Paper
 County Code
 Course
 DHS Documents
 Document
 Errata
 Executive Regulation
 Federal Guideline
 Firm Content
 Guideline
 Handbook
 Interpretation
 Journal
 Land Use and Development
 Law
 Legislative Rule
 Local Amendment
 Local Code
 Local Document
 Local Regulation
 Local Standards
 Manual
 Model Code
 Model Standard
 Notice
 Ordinance
 Other
 Paperback
 PASS
 Periodicals
 PIN
 Plan
 Policy
 Product
 Program
 Provisions
 Requirements
 Revisions
 Rules & Regulations
 Standards
 State Amendment
 State Code
 State Manual
 State Plan
 State Standards
 Statute
 Study Guide
 Supplement
 Technical Bulletin
 All
  • ASTM
    E2714-13 Standard Test Method for Creep-Fatigue Testing (Redline)
    Edition: 2013
    $83.62
    Unlimited Users per year

Description of ASTM-E2714 2013

ASTM E2714 - 13

Standard Test Method for Creep-Fatigue Testing

Active Standard ASTM E2714 | Developed by Subcommittee: E08.05

Book of Standards Volume: 03.01




ASTM E2714

Significance and Use

4.1 Creep-fatigue testing is typically performed at elevated temperatures and involves the sequential or simultaneous application of the loading conditions necessary to generate cyclic deformation/damage enhanced by creep deformation/damage or vice versa. Unless such tests are performed in vacuum or an inert environment, oxidation can also be responsible for important interaction effects relating to damage accumulation. The purpose of creep-fatigue tests can be to determine material property data for (a) assessment input data for the deformation and damage condition analysis of engineering structures operating at elevated temperatures (b) the verification of constitutive deformation and damage model effectiveness (c) material characterization, or (d) development and verification of rules for new construction and life assessment of high-temperature components subject to cyclic service with low frequencies or with periods of steady operation, or both.

4.2 In every case, it is advisable to have complementary continuous cycling fatigue data (gathered at the same strain/loading rate) and creep data determined from test conducted as per Practice E139 for the same material and test temperature(s). The procedure is primarily concerned with the testing of round bar test specimens subjected (at least remotely) to uniaxial loading in either force or strain control. The focus of the procedure is on tests in which creep and fatigue deformation and damage is generated simultaneously within a given cycle. Data which may be determined from creep-fatigue tests performed under such conditions may characterize (a) cyclic stress-strain deformation response (b) cyclic creep (or relaxation) deformation response (c) cyclic hardening, cyclic softening response or (d) cycles to crack formation, or both.

4.3 While there are a number of testing Standards and Codes of Practice that cover the determination of low cycle fatigue deformation and cycles to crack initiation properties (See Practice E606 , BS 7270: 2000 , JIS Z 22791992 , PrEN 3874, 1998 , PrEN 39881998 , ISO 121062003 , ISO 121112005 , and Practice E2368 -04 and ( 1 , 2 , 3 ) 7 , some of which provide guidance for testing at high temperature (for example, Practice E606 , ISO 121062003 , and Practice E2368 -04, there is no single standard which specifically prescribes a procedure for creep-fatigue testing.

1. Scope

1.1 This test method covers the determination of mechanical properties pertaining to creep-fatigue deformation or crack formation in nominally homogeneous materials, or both by the use of test specimens subjected to uniaxial forces under isothermal conditions. It concerns fatigue testing at strain rates or with cycles involving sufficiently long hold times to be responsible for the cyclic deformation response and cycles to crack formation to be affected by creep (and oxidation). It is intended as a test method for fatigue testing performed in support of such activities as materials research and development, mechanical design, process and quality control, product performance, and failure analysis. The cyclic conditions responsible for creep-fatigue deformation and cracking vary with material and with temperature for a given material.

1.2 The use of this test method is limited to specimens and does not cover testing of full-scale components, structures, or consumer products.

1.3 This test method is primarily aimed at providing the material properties required for assessment of defect-free engineering structures containing features that are subject to cyclic loading at temperatures that are sufficiently high to cause creep deformation.

1.4 This test method is applicable to the determination of deformation and crack formation or nucleation properties as a consequence of either constant-amplitude strain-controlled tests or constant-amplitude force-controlled tests. It is primarily concerned with the testing of round bar test specimens subjected to uniaxial loading in either force or strain control. The focus of the procedure is on tests in which creep and fatigue deformation and damage is generated simultaneously within a given cycle. It does not cover block cycle testing in which creep and fatigue damage is generated sequentially. Data that may be determined from creep-fatigue tests performed under conditions in which creep-fatigue deformation and damage is generated simultaneously include (a) cyclic stress- strain deformation response (b) cyclic creep (or relaxation) deformation response (c) cyclic hardening, cyclic softening response (d) cycles to formation of a single crack or multiple cracks in test specimens.

Note 1 A crack is believed to have formed when it has nucleated and propagated in a specimen that was initially uncracked to a specific size that is detectable by a stated technique. For the purpose of this standard, the formation of a crack is evidenced by a measurable increase in compliance of the specimen or by a size detectable by potential drop technique. Specific details of how to measure cycles to crack formation are described in 9.5.1 .

1.5 This test method is applicable to temperatures and strain rates for which the magnitudes of time-dependent inelastic strains (creep) are on the same order or larger than time-independent inelastic strain.

Note 2 The term inelastic is used herein to refer to all nonelastic strains. The term plastic is used herein to refer only to time independent (that is, non-creep) component of inelastic strain. A useful engineering estimate of time-independent strain can be obtained when the strain rate exceeds some value. For example, a strain rate of 1

This book also exists in the following packages...

Year Publisher Title Annual Price
VAR
ASTM
[+] $1,251.32 Buy
VAR
ASTM
[+] $4,507.56 Buy

Subscription Information

MADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

Some features of MADCAD.com ASTM Standards Subscriptions are:

- Online access: With MADCAD.com’ s web based subscription service no downloads or installations are required. Access ASTM Standards from any browser on your computer, tablet or smart phone.

- Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.

 

For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

About ASTM

ASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide.

X