Cart (0)
  • No items in cart.
Total
$0
There is a technical issue about last added item. You can click "Report to us" button to let us know and we resolve the issue and return back to you or you can continue without last item via click to continue button.
Search book title
Enter keywords for book title search
Search book content
Enter keywords for book content search
Filters:
FORMAT
BOOKS
PACKAGES
EDITION
to
PUBLISHER
(1)
(317)
(572)
(43)
(234)
(969)
(643)
(2114)
(64)
(92448)
(54)
(535)
(117)
(31)
(20)
(19)
(92811)
(3)
(17)
(1)
(351)
(300)
(6023)
(239)
(16)
(5)
(1621)
(16)
(18)
(28)
(4)
 
(6)
(7)
(115)
(3)
(57)
(5)
(5)
(1)
(1)
(2)
(23)
(26)
(27)
(13)
(61)
(24)
(22)
(7)
(8)
(20)
(1)
(3)
(50)
(6)
(31)
CONTENT TYPE
 Act
 Admin Code
 Announcements
 Bill
 Book
 CADD File
 CAN
 CEU
 Charter
 Checklist
 City Code
 Code
 Commentary
 Comprehensive Plan
 Conference Paper
 County Code
 Course
 DHS Documents
 Document
 Errata
 Executive Regulation
 Federal Guideline
 Firm Content
 Guideline
 Handbook
 Interpretation
 Journal
 Land Use and Development
 Law
 Legislative Rule
 Local Amendment
 Local Code
 Local Document
 Local Regulation
 Local Standards
 Manual
 Model Code
 Model Standard
 Notice
 Ordinance
 Other
 Paperback
 PASS
 Periodicals
 PIN
 Plan
 Policy
 Product
 Program
 Provisions
 Requirements
 Revisions
 Rules & Regulations
 Standards
 State Amendment
 State Code
 State Manual
 State Plan
 State Standards
 Statute
 Study Guide
 Supplement
 Technical Bulletin
 All
  • ASTM
    D8141-22 Standard Guide for Selecting Volatile Organic Compounds (VOCs) and Semi-Volatile Organic Compounds (SVOCs) Emission Testing Methods to Determine Emission Parameters for Modeling of Indoor Environments (Redline)
    Edition: 2022
    $103.58
    Unlimited Users per year

Description of ASTM-D8141 2022

ASTM D8141-22

Redline Standard: Standard Guide for Selecting Volatile Organic Compounds (VOCs) and Semi-Volatile Organic Compounds (SVOCs) Emission Testing Methods to Determine Emission Parameters for Modeling of Indoor Environments




ASTM D8141

Scope

1.1 This guide is intended to serve as a foundation for understanding when to use emission testing methods designed for volatile organic compounds (VOCs) to determine area-specific emission rates that are typically used in modeling indoor air VOC concentrations and when to use emission testing methods designed for semi-volatile organic compounds (SVOCs) to determine mass transfer emission parameters that are typically used to model indoor air, dust, and surface SVOC concentrations.

1.2 This guide discusses how organic chemicals are conventionally categorized with respect to volatility.

1.3 This guide presents a simplified mass-transfer model describing organic chemical emissions from a material to bulk air. The values of the model parameters are shown to be specific to material/chemical/chamber combinations.

1.4 This guide shows how to use a mass-transfer model to estimate whether diffusion of the chemical within the material or convective mass transfer of the chemical from the surface of the material to the overlying air limits chemical emissions from the material surface.

1.5 This guide describes the range of different chambers that are available for emission testing. The chambers are classified as either dynamic or static and either conventional or sandwich. The chambers are categorized as being optimal to determine either the area-specific emission rate or mass-transfer emission parameters.

1.6 This guide discusses the roles sorption and convective mass-transfer coefficients play in selecting the appropriate emission chamber and analysis method to accurately and efficiently characterize emissions from indoor materials for use in modeling indoor chemical concentrations.

1.7 This guide recommends when to choose an emission test method that is optimized to determine either the area-specific emission rate or mass-transfer emission parameters. For chemicals where the controlling mass-transfer process is unknown, the guide outlines a procedure to determine if the chemical emission is controlled by convective mass transfer of the chemical from the material.

1.8 This guide does not provide specific guidance for measuring emission parameters or conducting indoor exposure modeling.

1.9 Mechanisms controlling emissions from wet and dry materials and products are different. This guide considers the emission of chemicals from dry materials and products. Examples of functional uses of VOCs and SVOCs that this guide applies to include blowing agents, flame retardants, adhesives, plasticizers, solvents, antioxidants, preservatives, and coalescing agents (1).2 Emission estimations for other VOC and SVOC classes including those generated by incomplete combustion, spray application, or application as a powder (pesticides, termiticides, herbicides, stain repellents, sealants, water repellants) (1) may require different approaches than outlined in this guide because these processes can increase short-term concentrations of chemicals in the air independent of the volatility of the chemical and its categorization as a VVOC (very volatile organic compounds), VOC, SVOC, or NVOC (non-volatile organic compounds).

1.10 The effects of the emissions (for example, exposure, and health effects on occupants) are not addressed and are beyond the scope of this guide.

1.11 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.

1.12 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.

1.13 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.


Keywords

chamber; emissions; indoor air quality; modeling; semivolatile organic compounds; volatile organic compounds;


ICS Code

ICS Number Code 13.040.01 (Air quality in general)


DOI: 10.1520/D8141-22

This book also exists in the following packages...

Year Publisher Title Annual Price
VAR
ASTM
[+] $1,164.67 Buy
VAR
ASTM
[+] $5,933.17 Buy

Subscription Information

MADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

Some features of MADCAD.com ASTM Standards Subscriptions are:

- Online access: With MADCAD.com’ s web based subscription service no downloads or installations are required. Access ASTM Standards from any browser on your computer, tablet or smart phone.

- Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.

 

For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

About ASTM

ASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide.

X