Cart (0)
  • No items in cart.
Total
$0
There is a technical issue about last added item. You can click "Report to us" button to let us know and we resolve the issue and return back to you or you can continue without last item via click to continue button.
Search book title
Enter keywords for book title search
Search book content
Enter keywords for book content search
Filters:
FORMAT
BOOKS
PACKAGES
EDITION
to
PUBLISHER
(1)
(317)
(572)
(43)
(234)
(969)
(643)
(2114)
(64)
(92448)
(54)
(535)
(117)
(31)
(20)
(19)
(92811)
(3)
(17)
(1)
(351)
(300)
(6023)
(239)
(16)
(5)
(1621)
(16)
(18)
(28)
(4)
 
(6)
(7)
(115)
(3)
(57)
(5)
(5)
(1)
(1)
(2)
(23)
(26)
(27)
(13)
(61)
(24)
(22)
(7)
(8)
(20)
(1)
(3)
(50)
(6)
(31)
CONTENT TYPE
 Act
 Admin Code
 Announcements
 Bill
 Book
 CADD File
 CAN
 CEU
 Charter
 Checklist
 City Code
 Code
 Commentary
 Comprehensive Plan
 Conference Paper
 County Code
 Course
 DHS Documents
 Document
 Errata
 Executive Regulation
 Federal Guideline
 Firm Content
 Guideline
 Handbook
 Interpretation
 Journal
 Land Use and Development
 Law
 Legislative Rule
 Local Amendment
 Local Code
 Local Document
 Local Regulation
 Local Standards
 Manual
 Model Code
 Model Standard
 Notice
 Ordinance
 Other
 Paperback
 PASS
 Periodicals
 PIN
 Plan
 Policy
 Product
 Program
 Provisions
 Requirements
 Revisions
 Rules & Regulations
 Standards
 State Amendment
 State Code
 State Manual
 State Plan
 State Standards
 Statute
 Study Guide
 Supplement
 Technical Bulletin
 All
  • ASTM
    D6642-01(2006) Standard Guide for Comparison of Techniques to Quantify the Soil-Water (Moisture) Flux
    Edition: 2006
    $103.58
    Unlimited Users per year

Description of ASTM-D6642 2006

ASTM D6642 - 01(2006)

Standard Guide for Comparison of Techniques to Quantify the Soil-Water (Moisture) Flux

Active Standard ASTM D6642 | Developed by Subcommittee: D18.21

Book of Standards Volume: 04.09




ASTM D6642

Significance and Use

The determination of the soil-moisture flux is one of the fundamental needs in the soil physics and hydrology disciplines. The need arises from requirements for defining recharge rates to groundwater for water supply predictions, for contaminant transport estimates, for performance/risk assessment studies, and for infiltration testing purposes. The techniques outlined in this guide provide a number of alternatives for quantifying soil-moisture flux and/or the recharge rate for various purposes and conditions. This guide is not intended to be a comprehensive guide to techniques available for quantifying soil-moisture flux, but rather a state-of-the-practice summary. Likewise, this guide is not intended to be used as a comprehensive guide to performance of these methods, those detailed methods may come at a later time. Techniques that might be useful for the implementation of these methods, for example, sampling network design, are not part of this guide, but may come at a later time.

All of the techniques discussed in this guide have merit when it comes to quantification of the soil-moisture flux. Factors influencing the choice of methods include: need/objectives; cost; time scale of test; and defensibility/reproducibility/reduction in uncertainty. If the need for soil-moisture flux information is crucial in the decision making process for a give site or study, the application of multiple techniques is recommended. Most of the techniques identified above have independent assumptions associated with their use/application. Therefore, the application of two or more techniques at a given site may help to bound the results, or corroborate data distributions. The uncertainties involved in these analyses are sometimes quite large, and therefore the prospect of acquiring independent data sets is quite attractive.

As stated above, each of these techniques for quantification of soil-moisture flux has assumptions and limitations associated with it. The user is cautioned to be cognizant of those limitations/assumptions in applying these techniques at a given site so as not to violate any conditions and thereby invalidate the data.

In general, the tracer techniques for quantifying soil-moisture flux will have less uncertainty associated with them than do the soil-physics based modeling approaches because they are based on direct measures of transport phenomena, rather than indirect measures of soil characteristic data/parameters. However, the forward problem of predicting future soil-water movement rates or transient behavior is best served by the modeling applications. The tracer methods may be used to calibrate, or supply boundary condition data to, the modeling techniques.

Published reviews of these methods are also available in the literature (1, 2, 3) .

1. Scope

1.1 This guide describes techniques that may be used to quantify the soil-water (or soil-moisture) flux, the soil-water movement rate, and/or the recharge rate within the vadose zone. This guide is not intended to be all-inclusive with regard to available methods. However, the techniques described do represent the most widely used methods currently available.

1.2 This guide was written to detail the techniques available for quantifying soil-moisture flux in the vadose zone. These data are commonly required in studies of contaminant movement and in estimating the amount of water replenishing a renewable groundwater resource, that is, an aquifer. State and federal regulatory guidelines typically require this information in defining contaminant travel times, in performance assessment, and in risk assessment. Both unsaturated and saturated flow modelers benefit from these data in establishing boundary conditions and for use in calibrations of their computer simulations.

1.3 This guide is one of a series of standards on vadose zone characterization methods. Other standards have been prepared on vadose zone characterization techniques.

1.4 This guide offers an organized collection of information or a series of options and does not recommend a specific course of action. This document cannot replace education or experience and should be used in conjunction with professional judgment. Not all aspects of this guide may be applicable in all circumstances. This ASTM standard is not intended to represent or replace the standard of care by which the adequacy of a given professional service must be judged, nor should this document be applied without consideration of a project's many unique aspects. The word Standard in the title of this document means only that the document has been approved through the ASTM consensus process.

1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory requirements prior to use.


2. Referenced Documents (purchase separately) The documents listed below are referenced within the subject standard but are not provided as part of the standard.

ASTM Standards

D653 Terminology Relating to Soil, Rock, and Contained Fluids

D1452 Practice for Soil Exploration and Sampling by Auger Borings

D2216 Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass

D3404 Guide for Measuring Matric Potential in Vadose Zone Using Tensiometers

D4643 Test Method for Determination of Water (Moisture) Content of Soil by Microwave Oven Heating

D4696 Guide for Pore-Liquid Sampling from the Vadose Zone

D4700 Guide for Soil Sampling from the Vadose Zone

D4944 Test Method for Field Determination of Water (Moisture) Content of Soil by the Calcium Carbide Gas Pressure Tester

D5126 Guide for Comparison of Field Methods for Determining Hydraulic Conductivity in Vadose Zone

D5220 Test Method for Water Mass per Unit Volume of Soil and Rock In-Place by the Neutron Depth Probe Method


Keywords

boundary condition; recharge flux; soil-moisture flux;


ICS Code

ICS Number Code 13.080.40 (Hydrological properties of soil)


DOI: 10.1520/D6642-01R06

ASTM International is a member of CrossRef.

ASTM D6642

This book also exists in the following packages...

Year Publisher Title Annual Price
VAR
ASTM
[+] $1,235.20 Buy
VAR
ASTM
[+] $10,801.41 Buy

Subscription Information

MADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

Some features of MADCAD.com ASTM Standards Subscriptions are:

- Online access: With MADCAD.com’ s web based subscription service no downloads or installations are required. Access ASTM Standards from any browser on your computer, tablet or smart phone.

- Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.

 

For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

About ASTM

ASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide.

X