Cart (0)
  • No items in cart.
Total
$0
There is a technical issue about last added item. You can click "Report to us" button to let us know and we resolve the issue and return back to you or you can continue without last item via click to continue button.
Search book title
Enter keywords for book title search
Search book content
Enter keywords for book content search
Filters:
FORMAT
BOOKS
PACKAGES
EDITION
to
PUBLISHER
(1)
(317)
(572)
(44)
(234)
(969)
(643)
(2114)
(64)
(92448)
(54)
(535)
(117)
(31)
(20)
(19)
(92811)
(3)
(17)
(1)
(351)
(300)
(6217)
(239)
(16)
(5)
(1621)
(16)
(18)
(28)
(4)
 
(6)
(7)
(115)
(3)
(57)
(5)
(5)
(1)
(1)
(2)
(23)
(26)
(27)
(13)
(61)
(24)
(22)
(7)
(8)
(20)
(1)
(3)
(50)
(6)
(31)
CONTENT TYPE
 Act
 Admin Code
 Announcements
 Bill
 Book
 CADD File
 CAN
 CEU
 Charter
 Checklist
 City Code
 Code
 Commentary
 Comprehensive Plan
 Conference Paper
 County Code
 Course
 DHS Documents
 Document
 Errata
 Executive Regulation
 Federal Guideline
 Firm Content
 Guideline
 Handbook
 Interpretation
 Journal
 Land Use and Development
 Law
 Legislative Rule
 Local Amendment
 Local Code
 Local Document
 Local Regulation
 Local Standards
 Manual
 Model Code
 Model Standard
 Notice
 Ordinance
 Other
 Paperback
 PASS
 Periodicals
 PIN
 Plan
 Policy
 Product
 Program
 Provisions
 Requirements
 Revisions
 Rules & Regulations
 Standards
 State Amendment
 State Code
 State Manual
 State Plan
 State Standards
 Statute
 Study Guide
 Supplement
 Technical Bulletin
 All
  • ASTM
    D6421-99a(2009) Standard Test Method for Evaluating Automotive Spark-Ignition Engine Fuel for Electronic Port Fuel Injector Fouling by Bench Procedure
    Edition: 2009
    $93.60
    Unlimited Users per year

Description of ASTM-D6421 2009

ASTM D6421 - 99a(2009)

Standard Test Method for Evaluating Automotive Spark-Ignition Engine Fuel for Electronic Port Fuel Injector Fouling by Bench Procedure

Active Standard ASTM D6421 | Developed by Subcommittee: D02.A0.01

Book of Standards Volume: 05.03




ASTM D6421

Significance and Use

Driveability problems in PFI automobiles were first reported in 1984. Deposits are prone to form on the metering surfaces of pintle-type electronic fuel injectors. These deposits reduce fuel flow through the metering orifices. Reductions in metered fuel flow result in an upset in the air-fuel ratio, which can affect emissions and driveability. When heavy enough, these deposits can lead to driveability symptoms, such as hesitation, hard starting, or loss of power, or a combination thereof, that are easily noticed by the average driver and that lead to customer complaints. The mechanism of the formation of deposits is not completely understood. It is believed to be influenced by many factors, including driving cycle, engine and injector design, and composition of the fuel. The procedure in this test method has been found to build deposits in PFIs on a consistent basis. This procedure can be used to evaluate differences in base fuels and fuel additives. A study of PFI fouling was conducted in both the bench test and the vehicle test procedures to obtain a correlation. The vehicle tests were conducted as described in Test Method D5598 . The tests were conducted on several base gasolines, with and without additives blended into these base fuels. The PFI bench test proved to be reliable, repeatable, and a good predictor of PFI fouling in test vehicles.

State and Federal Legislative and Regulatory Action Legislative and regulatory activity, primarily by the state of California (see 2.3) and the federal government (see 2.4), necessitate the acceptance of a standard test method to evaluate the PFI deposit-forming tendency of an automotive spark-ignition engine fuel.

Relevance of Results The operating conditions and design of the laboratory apparatus used in this test method may not be representative of a current vehicle fuel system. These factors must be considered when interpreting results.

Test Validity :

Procedural Compliance The test results are not considered valid unless the test is completed in compliance with all requirements of this test method. Deviations from the parameter limits presented in Section 10 will result in an invalid test. Engineering judgment shall be applied during conduct of the test method when assessing any anomalies to ensure validity of the test results.

1. Scope

1.1 This test method covers a bench test procedure to evaluate the tendency of automotive spark-ignition engine fuel to foul electronic port fuel injectors (PFI). The test method utilizes a bench apparatus equipped with Bosch injectors specified for use in a 1985-1987 Chrysler 2.2-L turbocharged engine. This test method is based on a test procedure developed by the Coordinating Research Council (CRC) for prediction of the tendency of spark-ignition engine fuel to form deposits in the small metering clearances of injectors in a port fuel injection engine (see CRC Report No. 592).

1.2 The test method is applicable to spark-ignition engine fuels, which may contain antioxidants, corrosion inhibitors, metal deactivators, dyes, deposit control additives, demulsifiers, or oxygenates, or a combination thereof.

1.3 The values stated in SI units are to be regarded as the standard. Approximate inch-pound units are shown in parentheses for information purposes only.

1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements are given throughout this test method.

Note 1If there is any doubt as to the latest edition of Test Method D6421, contact ASTM International Headquarters. Other properties of significance to spark-ignition engine fuel are described in Specification D4814 .


2. Referenced Documents (purchase separately) The documents listed below are referenced within the subject standard but are not provided as part of the standard.

ASTM Standards

D4814 Specification for Automotive Spark-Ignition Engine Fuel

D5598 Test Method for Evaluating Unleaded Automotive Spark-Ignition Engine Fuel for Electronic Port Fuel Injector Fouling

Clean Air Act Amendment

CleanAirActAmendment Provisions for Attainment and Maintenance of National Air Quality Standards

Keywords

base fuel; bench test; deposit control additive; deposits (in internal combustion engines); electronic port fuel injector (PFI); flow rate, hot soak; injector fouling; pintle; spark-ignition engine fuel; test fuel; Automotive engine fuels/oils; Base fuel; Bench test; Bosch injectors; Deposit (internal combustion engine) formation; Electronic port fuel injector (PFI); Flow and flow rate--petroleum products; Hot soak; Injector fouling; Pintle ;


ICS Code

ICS Number Code 27.060.10 (Liquid and solid fuel burners)


DOI: 10.1520/D6421-99AR09

ASTM International is a member of CrossRef.

ASTM D6421

This book also exists in the following packages...

Year Publisher Title Annual Price
VAR
ASTM
[+] $1,385.31 Buy
VAR
ASTM
[+] $5,835.44 Buy

Subscription Information

MADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

Some features of MADCAD.com ASTM Standards Subscriptions are:

- Online access: With MADCAD.com’ s web based subscription service no downloads or installations are required. Access ASTM Standards from any browser on your computer, tablet or smart phone.

- Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.

 

For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

About ASTM

ASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide.

X