Cart (0)
  • No items in cart.
Total
$0
There is a technical issue about last added item. You can click "Report to us" button to let us know and we resolve the issue and return back to you or you can continue without last item via click to continue button.
Search book title
Enter keywords for book title search
Search book content
Enter keywords for book content search
Filters:
FORMAT
BOOKS
PACKAGES
EDITION
to
PUBLISHER
(1)
(326)
(572)
(44)
(234)
(969)
(652)
(2114)
(64)
(92448)
(54)
(535)
(117)
(33)
(20)
(19)
(93277)
(3)
(17)
(1)
(351)
(300)
(6217)
(239)
(16)
(5)
(1621)
(16)
(18)
(28)
(4)
 
(6)
(7)
(115)
(3)
(57)
(5)
(5)
(1)
(1)
(2)
(23)
(26)
(27)
(13)
(61)
(24)
(22)
(7)
(8)
(20)
(1)
(3)
(50)
(6)
(31)
CONTENT TYPE
 Act
 Admin Code
 Announcements
 Bill
 Book
 CADD File
 CAN
 CEU
 Charter
 Checklist
 City Code
 Code
 Commentary
 Comprehensive Plan
 Conference Paper
 County Code
 Course
 DHS Documents
 Document
 Errata
 Executive Regulation
 Federal Guideline
 Firm Content
 Guideline
 Handbook
 Interpretation
 Journal
 Land Use and Development
 Law
 Legislative Rule
 Local Amendment
 Local Code
 Local Document
 Local Regulation
 Local Standards
 Manual
 Model Code
 Model Standard
 Notice
 Ordinance
 Other
 Paperback
 PASS
 Periodicals
 PIN
 Plan
 Policy
 Product
 Program
 Provisions
 Requirements
 Revisions
 Rules & Regulations
 Standards
 State Amendment
 State Code
 State Manual
 State Plan
 State Standards
 Statute
 Study Guide
 Supplement
 Technical Bulletin
 All
  • ASTM
    D4015-15e1 Standard Test Methods for Modulus and Damping of Soils by Fixed-Base Resonant Column Devices
    Edition: 2015
    $134.78
    Unlimited Users per year

Description of ASTM-D4015 2015

ASTM D4015-15e1

Historical Standard: Standard Test Methods for Modulus and Damping of Soils by Fixed-Base Resonant Column Devices




ASTM D4015

Scope

1.1 These test methods cover the determination of shear modulus and shear damping as a function of shear strain amplitude for solid cylindrical specimens of soil in intact and remolded conditions by vibration using resonant column devices. The vibration of the specimen may be superposed on a controlled static state of stress in the specimen. The vibration apparatus and specimen may be enclosed in a triaxial chamber and subjected to an all-around pressure and axial load. In addition, the specimen may be subjected to other controlled conditions (for example, pore-water pressure, degree of saturation, temperature). These test methods of modulus and damping determination are considered nondestructive when the shear strain amplitudes of vibration are less than 10–2 % (10–4 in./in.), and many measurements may be made on the same specimen and with various states of static stress.

1.2 Two device configurations are covered by these test methods: Device Type 1 where a known torque is applied to the top of the specimen and the resulting rotational motion is measured at the top of the specimen, and Device Type 2 where an uncalibrated torque is applied to the top of the specimen and the torque transmitted through the specimen is measured by a torque transducer at the base of the specimen. For both devices, the torque is applied to the active end (usually top) of the specimen and the rotational motion also is measured at the active end of the specimen.

1.3 These test methods are limited to the determination of the shear modulus and shear damping, the necessary vibration, and specimen preparation procedures related to the vibration, etc., and do not cover the application, measurement, or control of the axial and lateral static normal stresses. The latter procedures may be covered by, but are not limited to, Test Method D2850, D3999/D3999M, D4767, D5311/D5311M, or D7181.

1.4 Significant Digits—All recorded and calculated values shall conform to the guide for significant digits and rounding established in Practice D6026.

1.4.1 The procedures used to specify how data are collected/recorded and calculated in this standard are regarded as the industry standard. In addition, they are representative of the significant digits that should generally be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user’s objectives; and it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of this standard to consider significant digits used in analysis methods for engineering design.

1.4.2 Measurements made to more significant digits or better sensitivity than specified in this standard shall not be regarded a nonconformance with this standard.

1.5 Units—The values stated in SI units are to be regarded as standard. The values given in parentheses are mathematical conversions to inch-pound units, which are provided for information only and are not considered standard. Reporting of test results in units other than SI shall not be regarded as nonconformance with these test methods.

1.5.1 The converted inch-pound units use the gravitational system of units. In this system, the pound (lbf) represents a unit of force (weight), while the unit for mass is slugs. The converted slug unit is not given, unless dynamic (F = ma) calculations are involved.

1.5.2 It is common practice in the engineering/construction profession to concurrently use pounds to represent both a unit of mass (lbm) and of force (lbf). This implicitly combines two separate systems of units; that is, the absolute system and the gravitational system. It is scientifically undesirable to combine the use of two separate sets of inch-pound units within a single standard. As stated, this standard includes the gravitational system of inch-pound units and does not use/present the slug unit for mass. However, the use of balances or scales recording pounds of mass (lbm) or recording density in lbm/ft3 shall not be regarded as nonconformance with this standard.

1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.


Keywords

amplitude; confining pressure; damping; dynamic loading; elastic waves; frequency; laboratory tests; nondestructive tests; resonance; shear modulus; shear tests; soils; strain; stress; torsional oscillations; transfer function method; triaxial stress;


ICS Code

ICS Number Code 93.020 (Earth works. Excavations. Foundation construction. Underground works)


DOI: 10.1520/D4015-15E01

This book also exists in the following packages...

Year Publisher Title Annual Price
VAR
ASTM
[+] $10,801.41 Buy
VAR
ASTM
[+] $1,373.22 Buy
VAR
ASTM
[+] $5,812.65 Buy

Subscription Information

MADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

Some features of MADCAD.com ASTM Standards Subscriptions are:

- Online access: With MADCAD.com’ s web based subscription service no downloads or installations are required. Access ASTM Standards from any browser on your computer, tablet or smart phone.

- Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.

 

For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

About ASTM

ASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide.

X