Cart (0)
  • No items in cart.
Total
$0
There is a technical issue about last added item. You can click "Report to us" button to let us know and we resolve the issue and return back to you or you can continue without last item via click to continue button.
Search book title
Enter keywords for book title search
Search book content
Enter keywords for book content search
Filters:
FORMAT
BOOKS
PACKAGES
EDITION
to
PUBLISHER
(1)
(326)
(572)
(44)
(234)
(969)
(652)
(2114)
(64)
(92448)
(54)
(535)
(117)
(33)
(20)
(19)
(93277)
(3)
(17)
(1)
(351)
(300)
(6217)
(239)
(16)
(5)
(1621)
(16)
(19)
(28)
(4)
 
(6)
(7)
(115)
(3)
(57)
(5)
(5)
(1)
(1)
(2)
(23)
(26)
(27)
(13)
(61)
(24)
(22)
(7)
(8)
(20)
(1)
(3)
(50)
(6)
(31)
CONTENT TYPE
 Act
 Admin Code
 Announcements
 Bill
 Book
 CADD File
 CAN
 CEU
 Charter
 Checklist
 City Code
 Code
 Commentary
 Comprehensive Plan
 Conference Paper
 County Code
 Course
 DHS Documents
 Document
 Errata
 Executive Regulation
 Federal Guideline
 Firm Content
 Guideline
 Handbook
 Interpretation
 Journal
 Land Use and Development
 Law
 Legislative Rule
 Local Amendment
 Local Code
 Local Document
 Local Regulation
 Local Standards
 Manual
 Model Code
 Model Standard
 Notice
 Ordinance
 Other
 Paperback
 PASS
 Periodicals
 PIN
 Plan
 Policy
 Product
 Program
 Provisions
 Requirements
 Revisions
 Rules & Regulations
 Standards
 State Amendment
 State Code
 State Manual
 State Plan
 State Standards
 Statute
 Study Guide
 Supplement
 Technical Bulletin
 All
  • ASTM
    C780-12a Standard Test Method for Preconstruction and Construction Evaluation of Mortars for Plain and Reinforced Unit Masonry
    Edition: 2012
    $103.58
    Unlimited Users per year

Description of ASTM-C780 2012

ASTM C780 - 12a

Standard Test Method for Preconstruction and Construction Evaluation of Mortars for Plain and Reinforced Unit Masonry

Active Standard ASTM C780 | Developed by Subcommittee: C12.02

Book of Standards Volume: 04.05




ASTM C780

Significance and Use

5.1 During preconstruction and construction evaluations, use of these test methods establishes specific and overall performance characteristics for the mortar system.

5.2 Preconstruction testing of mortars prebatched by weight provides information for the selection of the individual mortar system best suited for the masonry to be constructed. The recommended tests and their significance are as follows:

5.2.1 Consistency determinations by cone penetration ( Annex A1 ) allow gaging the water additions for all mortars included in the preconstruction test series. Even if the mortar consistency as measured at the construction site is at a different penetration value than those measured during the preconstruction tests, the cone preparation test serves to standardize water additions for mortars being considered as alternatives before construction. Additional testing of mortar water content-consistency relationships ( Annex A4 ) will allow relating these two factors to batch-to-batch variations at the construction site.

5.2.2 Consistency retention by cone penetration ( Annex A2 ) using disturbed or undisturbed mortar samples provides a means of establishing the early-age setting and stiffening characteristics of the mortars. Because laboratory testing is conducted under static climatic conditions, consistency retention test results reflect the relative performance of the mortar systems under test. The same general relationships are expected to hold during testing at the construction project, except as they are influenced by jobsite weather conditions.

5.2.3 Mortar water-content determinations ( Annex A4 ) allow measurement of the water content of the mortar mixture. Mortars prebatched using moist masonry sand may be mathematically analyzed for mortar water content; however, this test, when used for preconstruction evaluation, establishes the effectiveness of the test method and serves as the control or base for tests performed at the construction site.

5.2.4 Mortar aggregate ratio testing ( Annex A4 ) provides a method for determining the ratio of aggregate-to-cementitious materials. The sieving operation employed during this test is incapable of separating an individual cementitious material when more than one such material is used, but can accurately establish the aggregate-to-cementitious materials ratio of the mixture.

5.2.5 Mortar air-content testing ( Annex A5 ) is useful in establishing the value of this component of the mortar. This test is of particular importance in evaluating mortars that contain air-entraining portland cement, air-entraining lime, masonry cement or any combination thereof.

5.2.6 Compressive strength testing ( Annex A6 ) of molded mortar cylinders and cubes establishes one of the characteristics of hardened mortar. Mortar compressive strength test values are not representative of the actual compressive strength of mortar in the assembly and are not appropriate for use in predicting the compressive strength that would be attained by the mortar in the masonry assembly. The measured compressive strength of a molded mortar specimen is almost always lower than the strength of the same mortar in the wall, primarily as a result of differences in mortar water content and specimen shape. Mortar compressive strength is influenced by mortar water content at the time of set. Because molded mortar specimens are not in contact with absorptive masonry units and are not subjected to other mechanisms of water loss, they have higher water contents than mortar in the wall. Higher water contents almost always result in lower strengths. Specimen size and shape also affect compressive strength. Cylinders and cubes exhibit different strengths even when made from the same mortar mix. Both of these specimen configurations yield lower strengths than what would be attained if a specimen having the same size and configuration of a typical mortar joint could be reliably tested.

Note 3 When cube and cylinder test specimens from like mixtures are to be compared, the cylinder compressive strength is approximately 85?% of the cube compressive strength.

5.3 Testing during the actual construction may employ one or more of the test methods described in 4.2 . Repetitive testing using these test methods on consecutive or intermittent batches provides a method for measurement of batch-to-batch variations in the mortar production. Testing during actual construction may be referenced to laboratory testing and used to predict later age mortar characteristics. In addition to the comments in 5.2 , the following test meanings may be obtained from construction project testing:

5.3.1 Consistency by cone penetration ( Annex A1 ) is used as a quick reference for indicating batch-to-batch variations in mix ingredients and mixing time. Erratic consistency readings indicate poor control during batching and mixing, but they do not indicate if cement, sand, or water additions are improper. Other test methods must be used to isolate and identify the unsatisfactory proportioning or mixing procedure, for example, cement to aggregate, mortar water, or air content tests.

5.3.2 Consistency retention by cone penetration ( Annex A2 ) tests establishes the early-age setting and stiffening characteristics of the mortar. These properties are influenced by mix proportions and ingredients, weather conditions, effects of chemical additives, and mixing time.

5.3.3 Individual and repeated evaluations of mortar water content ( Annex A4 ) show the ability of the mixer operator to properly and consistently add water to the mixer.

5.3.4 Individual and repeated tests for mortar aggregate ratio ( Annex A4 ) show the ability of the mixer operator to properly and consistently add the cementitious material and sand to the mixer, and will establish batch-to-batch variations in the composition of the mortar.

5.3.5 Individual and repetitive tests for mortar air content ( Annex A5 ) show the changes caused by variations in mixing time, mixing efficiency and other factors.

5.3.6 Comparison of compressive strength tests ( Annex A6 ) of field batched mortars to preconstruction mortar compression tests, each conducted in accordance with this test method, can be used to identify variations in mortar mix constituents and/or proportions. Variations in compressive strength values typically indicate changes in mix water content, mixing procedures, mix materials, material proportions, and environmental conditions.

Note 4 Variations in the measured compressive strengths of field-sampled mortar and between the measured compressive strengths of construction and pre-construction mortar samples should be expected. Many of these variations result from sampling mortar from the mixer or mortarboard and do not necessarily translate into significant mortar strength variations in the wall. Unit suction will remove water from the mortar in the wall and the curing conditions are different. However, significant variation between measured compression strength values should prompt evaluation of probable causes of this variation. Conducting companion mortar aggregate ratio tests would assist in determining if changes in mix constituents and proportions are the likely cause. (See 5.2.6 for additional information).

1. Scope

1.1 This test method covers procedures for the sampling and testing of mortars for composition and for their plastic and hardened properties, either before or during their actual use in construction.

Note 1 Guide C1586 provides guidance on evaluating mortar and clarifies the purpose of both this test method and Specification C270 .
Note 2 The testing agency performing this test method should be evaluated in accordance with Practice C1093 .

1.2 Preconstruction Evaluation This test method permits comparisons of mortars made from different materials under simulated field conditions. It is also used to establish baseline values for comparative evaluation of field mortars.

1.3 Construction Evaluation Use of this method in the field provides a means for quality assurance of field-mixed mortar. It includes methods for verifying the mortar mix proportions, comparing test results for field mortars to preconstruction testing, and determining batch-to-batch uniformity of the mortar.

1.4 The test results obtained under this test method are not required to meet the minimum compressive values in accordance with the property specifications in Specification C270 .

1.5 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.

1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific hazards statements, see Section 8 .


2. Referenced Documents (purchase separately) The documents listed below are referenced within the subject standard but are not provided as part of the standard.

ASTM Standards

C39/C39M Test Method for Compressive Strength of Cylindrical Concrete Specimens

C109/C109M Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens)

C128 Test Method for Density, Relative Density (Specific Gravity), and Absorption of Fine Aggregate

C173/C173M Test Method for Air Content of Freshly Mixed Concrete by the Volumetric Method

C187 Test Method for Amount of Water Required for Normal Consistency of Hydraulic Cement Paste

C231 Test Method for Air Content of Freshly Mixed Concrete by the Pressure Method

C270 Specification for Mortar for Unit Masonry

C470/C470M Specification for Molds for Forming Concrete Test Cylinders Vertically

C511 Specification for Mixing Rooms, Moist Cabinets, Moist Rooms, and Water Storage Tanks Used in the Testing of Hydraulic Cements and Concretes

C617 Practice for Capping Cylindrical Concrete Specimens

C1093 Practice for Accreditation of Testing Agencies for Masonry

C1180 Terminology of Mortar and Grout for Unit Masonry

C1231 Practice for Use of Unbonded Caps in Determination of Compressive Strength of Hardened Concrete Cylinders

C1586 Guide for Quality Assurance of Mortars

E11 Specification for Woven Wire Test Sieve Cloth and Test Sieves


Keywords

aggregate ratio; air content; compressive strength; concrete penetrometer; cone penetrometer; consistency; consistency retention; mortar;


ICS Code

ICS Number Code 91.100.10 (Cement. Gypsum. Lime. Mortar)


DOI: 10.1520/C0780-12A

ASTM International is a member of CrossRef.

ASTM C780

This book also exists in the following packages...

Year Publisher Title Annual Price
VAR
ASTM
[+] $5,812.65 Buy
VAR
ASTM
[+] $10,801.41 Buy
VAR
ASTM
[+] $1,207.99 Buy
VAR
ASTM
[+] $3,560.85 Buy

Subscription Information

MADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

Some features of MADCAD.com ASTM Standards Subscriptions are:

- Online access: With MADCAD.com’ s web based subscription service no downloads or installations are required. Access ASTM Standards from any browser on your computer, tablet or smart phone.

- Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.

 

For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

About ASTM

ASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide.

X