Cart (0)
  • No items in cart.
Total
$0
There is a technical issue about last added item. You can click "Report to us" button to let us know and we resolve the issue and return back to you or you can continue without last item via click to continue button.
Search book title
Enter keywords for book title search
Search book content
Enter keywords for book content search
Filters:
FORMAT
BOOKS
PACKAGES
EDITION
to
PUBLISHER
(1)
(325)
(572)
(44)
(234)
(969)
(649)
(2114)
(64)
(92448)
(54)
(535)
(117)
(33)
(20)
(19)
(92811)
(3)
(17)
(1)
(351)
(300)
(6217)
(239)
(16)
(5)
(1621)
(16)
(18)
(28)
(4)
 
(6)
(7)
(115)
(3)
(57)
(5)
(5)
(1)
(1)
(2)
(23)
(26)
(27)
(13)
(61)
(24)
(22)
(7)
(8)
(20)
(1)
(3)
(50)
(6)
(31)
CONTENT TYPE
 Act
 Admin Code
 Announcements
 Bill
 Book
 CADD File
 CAN
 CEU
 Charter
 Checklist
 City Code
 Code
 Commentary
 Comprehensive Plan
 Conference Paper
 County Code
 Course
 DHS Documents
 Document
 Errata
 Executive Regulation
 Federal Guideline
 Firm Content
 Guideline
 Handbook
 Interpretation
 Journal
 Land Use and Development
 Law
 Legislative Rule
 Local Amendment
 Local Code
 Local Document
 Local Regulation
 Local Standards
 Manual
 Model Code
 Model Standard
 Notice
 Ordinance
 Other
 Paperback
 PASS
 Periodicals
 PIN
 Plan
 Policy
 Product
 Program
 Provisions
 Requirements
 Revisions
 Rules & Regulations
 Standards
 State Amendment
 State Code
 State Manual
 State Plan
 State Standards
 Statute
 Study Guide
 Supplement
 Technical Bulletin
 All
  • BSI
    PD ISO/TR 20811:2017 Optics and photonics. Lasers and laser-related equipment. Laser-induced molecular contamination testing
    Edition: 2017
    $316.70
    / user per year

Description of PD ISO/TR 20811:2017 2017

This document describes the setup, test procedure and analysis of measured data for investigation of laser-induced molecular contamination (LIMC) for space and vacuum applications.

LIMC is the formation of depositions on optical surfaces due to interaction of intense light radiation with outgassing molecules especially from organic materials. It is a phenomenon of molecular contamination and it is distinguished from particle contamination, which can occur during manufacturing, assembly, integration or test of the optical components.

Formation of laser-induced depositions can lead to deterioration of the performance of an optical system. Phase distortion, scattering and absorption can be increased by LIMC. LIMC is of particular relevance, if a laser system is operated in vacuum at short wavelength and short pulse duration. In such a case, even small partial pressure of contamination material in the range of 10−5 hPa could have strong negative impact on optical performance. It was also shown that the laser-induced damage threshold could be reduced by a factor of 10 and more if laser-induced depositions are involved.

Laser-induced molecular contamination and laser-induced damage are both phenomena, for which the interaction of laser radiation with optical surfaces plays a major role, in case of LIMC with additional molecular contamination. Therefore, this document is treated in relation to ISO 21254 (all parts) which specifies the test methods for the determination of laser-induced damage thresholds.

This method was derived to evaluate qualitatively, whether the material under investigation causes deposits on optical surfaces in a low-pressure environment in the presence of high-energy nanosecond pulsed laser irradiation at a wavelength of 355 nm. Due to the nature of photochemical surface reactions, this result cannot be directly transferred to scenarios where the properties of the irradiation are altered (especially wavelength, repetition rate, pulse duration, etc.). Due to the non-linear growth of the laser-induced contamination and its detection methods, this technique does not provide quantitative means to evaluate the deposit and, therefore, it should be seen as a means to compare materials relatively with respect to their laser-induced contamination behaviour.

Furthermore, it is out of the scope of this method to select representative quantities of contamination materials — representative with respect to the material partial pressure present in the vicinity of the optical surface in a real laser system. This is carefully derived with other methods and is a mandatory parameter to be fixed before applying this method.



About BSI

BSI Group, also known as the British Standards Institution is the national standards body of the United Kingdom. BSI produces technical standards on a wide range of products and services and also supplies certification and standards-related services to businesses.

X