Cart (0)
  • No items in cart.
Total
$0
There is a technical issue about last added item. You can click "Report to us" button to let us know and we resolve the issue and return back to you or you can continue without last item via click to continue button.
Search book title
Enter keywords for book title search
Search book content
Enter keywords for book content search
Filters:
FORMAT
BOOKS
PACKAGES
EDITION
to
PUBLISHER
(1)
(317)
(572)
(43)
(234)
(969)
(643)
(2114)
(64)
(92448)
(54)
(535)
(117)
(31)
(20)
(19)
(92811)
(3)
(17)
(1)
(351)
(300)
(6023)
(239)
(16)
(5)
(1621)
(16)
(18)
(28)
(4)
 
(6)
(7)
(115)
(3)
(57)
(5)
(5)
(1)
(1)
(2)
(23)
(26)
(27)
(13)
(61)
(24)
(22)
(7)
(8)
(20)
(1)
(3)
(50)
(6)
(31)
CONTENT TYPE
 Act
 Admin Code
 Announcements
 Bill
 Book
 CADD File
 CAN
 CEU
 Charter
 Checklist
 City Code
 Code
 Commentary
 Comprehensive Plan
 Conference Paper
 County Code
 Course
 DHS Documents
 Document
 Errata
 Executive Regulation
 Federal Guideline
 Firm Content
 Guideline
 Handbook
 Interpretation
 Journal
 Land Use and Development
 Law
 Legislative Rule
 Local Amendment
 Local Code
 Local Document
 Local Regulation
 Local Standards
 Manual
 Model Code
 Model Standard
 Notice
 Ordinance
 Other
 Paperback
 PASS
 Periodicals
 PIN
 Plan
 Policy
 Product
 Program
 Provisions
 Requirements
 Revisions
 Rules & Regulations
 Standards
 State Amendment
 State Code
 State Manual
 State Plan
 State Standards
 Statute
 Study Guide
 Supplement
 Technical Bulletin
 All
  • ASTM
    D6196-23 Standard Practice for Choosing Sorbents, Sampling Parameters and Thermal Desorption Analytical Conditions for Monitoring Volatile Organic Chemicals in Air
    Edition: 2023
    $112.32
    Unlimited Users per year

Description of ASTM-D6196 2023

ASTM D6196-23

Active Standard: Standard Practice for Choosing Sorbents, Sampling Parameters and Thermal Desorption Analytical Conditions for Monitoring Volatile Organic Chemicals in Air




ASTM D6196

Scope

1.1 This practice is intended to assist in the selection of sorbents and procedures for the sampling and analysis of ambient (1),2 indoor (2), and workplace (3, 4) atmospheres for a variety of common volatile organic compounds (VOCs). It may also be used for measuring emissions from materials in small or full scale environmental chambers or for human exposure assessment.

1.2 This practice is based on the sorption of VOCs from air onto selected sorbents or combinations of sorbents. Sampled air is either drawn through a tube containing one or a series of sorbents (pumped sampling) or allowed to diffuse, under controlled conditions, onto the sorbent surface at the sampling end of the tube (diffusive or passive sampling). The sorbed VOCs are subsequently recovered by thermal desorption and analyzed by capillary gas chromatography.

1.3 This practice applies to three basic types of samplers that are compatible with thermal desorption: (1) pumped sorbent tubes containing one or more sorbents; (2) axial passive (diffusive) samplers (typically of the same physical dimensions as standard pumped sorbent tubes and containing only one sorbent); and (3) radial passive (diffusive) samplers.

1.4 This practice recommends a number of sorbents that can be packed in sorbent tubes for use in the sampling of vapor-phase organic chemicals; including volatile and semi-volatile organic compounds which, generally speaking, boil in the range 0 °C to 400 °C (v.p. 15 kPa to 0.01 kPa at 25 °C).

1.5 This practice can be used for the measurement of airborne vapors of these organic compounds over a wide concentration range.

1.5.1 With pumped sampling, this practice can be used for the speciated measurement of airborne vapors of VOCs in a concentration range of approximately 0.1 μg/m3 to 1 g/m3, for individual organic compounds in 1 L to 10 L air samples. Quantitative measurements are possible when using validated procedures with appropriate quality control measures.

1.5.2 With axial diffusive sampling, this practice is valid for the speciated measurement of airborne vapors of volatile organic compounds in a concentration range of approximately 100 µg/m3 to 100 mg/m3 for individual organic compounds for an exposure time of 8 h or 1 µg/m3 to 1 mg/m3 for individual organic compounds for an exposure time of four weeks.

1.5.3 With radial diffusive sampling, this practice is valid for the measurement of airborne vapors of volatile organic compounds in a concentration range of approximately 5 µg/m3 to 5 mg/m3 for individual organic compounds for exposure times of one to six hours.

1.5.4 The upper limit of the useful range is almost always set by the linear dynamic range of the gas chromatograph column and detector, or by the sample splitting capability of the analytical instrumentation used.

1.5.5 The lower limit of the useful range depends on the noise level of the detector and on blank levels of analyte or interfering artifacts (or both) on the sorbent tubes.

1.6 This procedure can be used for personal and fixed location sampling. It cannot be used to measure instantaneous or short-term fluctuations in concentration. Alternative ‘grab sampling’ procedures using canister air samplers (for example, Test Method D5466) may be suitable for monitoring instantaneous or short term fluctuations in air concentration. Alternatives for on-site measurement include, but are not limited to, gas chromatography, real-time mass spectrometry detectors and infrared spectrometry.

1.7 The sampling method gives a time-weighted average result.

1.8 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.

1.9 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.

1.10 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.


Keywords

ambient air; diffusive sampling; indoor air; pumped sampling; volatile organic compounds; workplace air;


ICS Code

ICS Number Code 13.040.20 (Ambient atmospheres)


DOI: 10.1520/D6196-23

The following editions for this book are also available...

This book also exists in the following packages...

Year Publisher Title Annual Price
VAR
ASTM
[+] $1,164.67 Buy
VAR
ASTM
[+] $5,933.17 Buy
VAR
ASTM
[+] $3,560.85 Buy

Subscription Information

MADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

Some features of MADCAD.com ASTM Standards Subscriptions are:

- Online access: With MADCAD.com’ s web based subscription service no downloads or installations are required. Access ASTM Standards from any browser on your computer, tablet or smart phone.

- Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.

 

For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

About ASTM

ASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide.

X