Cart (0)
  • No items in cart.
Total
$0
There is a technical issue about last added item. You can click "Report to us" button to let us know and we resolve the issue and return back to you or you can continue without last item via click to continue button.
Search book title
Enter keywords for book title search
Search book content
Enter keywords for book content search
Filters:
FORMAT
BOOKS
PACKAGES
EDITION
to
PUBLISHER
(1)
(317)
(572)
(43)
(234)
(969)
(643)
(2114)
(64)
(92448)
(54)
(535)
(117)
(31)
(20)
(19)
(92811)
(3)
(17)
(1)
(351)
(300)
(6023)
(239)
(16)
(5)
(1621)
(16)
(18)
(28)
(4)
 
(6)
(7)
(115)
(3)
(57)
(5)
(5)
(1)
(1)
(2)
(23)
(26)
(27)
(13)
(61)
(24)
(22)
(7)
(8)
(20)
(1)
(3)
(50)
(6)
(31)
CONTENT TYPE
 Act
 Admin Code
 Announcements
 Bill
 Book
 CADD File
 CAN
 CEU
 Charter
 Checklist
 City Code
 Code
 Commentary
 Comprehensive Plan
 Conference Paper
 County Code
 Course
 DHS Documents
 Document
 Errata
 Executive Regulation
 Federal Guideline
 Firm Content
 Guideline
 Handbook
 Interpretation
 Journal
 Land Use and Development
 Law
 Legislative Rule
 Local Amendment
 Local Code
 Local Document
 Local Regulation
 Local Standards
 Manual
 Model Code
 Model Standard
 Notice
 Ordinance
 Other
 Paperback
 PASS
 Periodicals
 PIN
 Plan
 Policy
 Product
 Program
 Provisions
 Requirements
 Revisions
 Rules & Regulations
 Standards
 State Amendment
 State Code
 State Manual
 State Plan
 State Standards
 Statute
 Study Guide
 Supplement
 Technical Bulletin
 All
  • ASTM
    C1576-05(2010) Standard Test Method for Determination of Slow Crack Growth Parameters of Advanced Ceramics by Constant Stress Flexural Testing (Stress Rupture) at Ambient Temperature (Redline)
    Edition: 2010
    $71.88
    Unlimited Users per year

Description of ASTM-C1576 2010

ASTM C1576 - 05(2010)

Standard Test Method for Determination of Slow Crack Growth Parameters of Advanced Ceramics by Constant Stress Flexural Testing (Stress Rupture) at Ambient Temperature

Active Standard ASTM C1576 | Developed by Subcommittee: C28.01

Book of Standards Volume: 15.01




ASTM C1576

Significance and Use

The service life of many structural ceramic components is often limited by the subcritical growth of cracks. This test method provides an approach for appraising the relative slow crack growth susceptibility of ceramic materials under specified environments at ambient temperature. Furthermore, this test method may establish the influences of processing variables and composition on slow crack growth as well as on strength behavior of newly developed or existing materials, thus allowing tailoring and optimizing material processing for further modification. In summary, this test method may be used for material development, quality control, characterization, design code or model verification, and limited design data generation purposes.

Note 4Data generated by this test method do not necessarily correspond to crack velocities that may be encountered in service conditions. The use of data generated by this test method for design purposes, depending on the range and magnitude of applied stresses used, may entail extrapolation and uncertainty.

This test method is related to Test Method C1368 ( constant stress-rate flexural testing ), however, C1368 uses constant stress rates to determine corresponding flexural strengths whereas this test method employs constant stress to determine corresponding times to failure. In general, the data generated by this test method may be more representative of actual service conditions as compared with those by constant stress-rate testing. However, in terms of test time, constant stress testing is inherently and significantly more time- consuming than constant stress rate testing.

The flexural stress computation in this test method is based on simple elastic beam theory, with the assumptions that the material is isotropic and homogeneous, the moduli of elasticity in tension and compression are identical, and the material is linearly elastic. The grain size should be no greater than one fiftieth (1/50) of the beam depth as measured by the mean linear intercept method ( E112 ). In cases where the material grain size is bimodal or the grain size distribution is wide, the limit should apply to the larger grains.

The test specimen sizes and test fixtures have been selected in accordance with Test Methods C1161 and C1368 , which provides a balance between practical configurations and resulting errors, as discussed in Refs. (4,5).

The data are evaluated by regression of log applied stress vs. log time to failure to the experimental data. The recommendation is to determine the slow crack growth parameters by applying the power law crack velocity function. For derivation of this, and for alternative crack velocity functions, see Appendix X1.

Note 5A variety of crack velocity functions exist in the literature. A comparison of the functions for the prediction of long-term static fatigue data from short-term dynamic fatigue data [6] indicates that the exponential forms better predict the data than the power-law form. Further, the exponential form has a theoretical basis [7-10], however, the power law form is simpler mathematically. Both have been shown to fit short-term test data well.

The approach used in this method assumes that the material displays no rising R-curve behavior, that is, no increasing fracture resistance (or crack-extension resistance) with increasing crack length. The existence of such behavior cannot be determined from this test method. The analysis further assumes that the same flaw type controls all times-to-failure.

Slow crack growth behavior of ceramic materials can vary as a function of mechanical, material, thermal, and environmental variables. Therefore, it is essential that test results accurately reflect the effects of specific variables under study. Only then can data be compared from one investigation to another on a valid basis, or serve as a valid basis for characterizing materials and assessing structural behavior.

Like strength, time to failure of advanced ceramics subjected to slow crack growth is probabilistic in nature. Therefore, slow crack growth that is determined from times to failure under given constant applied stresses is also a probabilistic phenomenon. The scatter in time to failure in constant stress testing is much greater than the scatter in strength in constant stress-rate (or any strength) testing (Refs. (1, 11-13)), see Appendix X2. Hence, a proper range and number of constant applied stresses, in conjunction with an appropriate number of test specimens, are required for statistical reproducibility and reliable design data generation (Ref. (1-3)). This standard provides guidance in this regard.

The time to failure of a ceramic material for a given test specimen and test fixture configuration is dependent on its inherent resistance to fracture, the presence of flaws, applied stress, and environmental effects. Fractographic analysis to verify the failure mechanisms has proven to be a valuable tool in the analysis of SCG data to verify that the same flaw type is dominant over the entire test range (Refs. 14 and 15), and it is to be used in this standard (refer to Practice C1322 ).

1. Scope

1.1 This standard test method covers the determination of slow crack growth (SCG) parameters of advanced ceramics by using constant stress flexural testing in which time to failure of flexure test specimens is determined in four-point flexure as a function of constant applied stress in a given environment at ambient temperature. In addition, test specimen fabrication methods, test stress levels, data collection and analysis, and reporting procedures are addressed. The decrease in time to failure with increasing applied stress in a specified environment is the basis of this test method that enables the evaluation of slow crack growth parameters of a material. The preferred analysis in the present method is based on a power law relationship between crack velocity and applied stress intensity; alternative analysis approaches are also discussed for situations where the power law relationship is not applicable.


2. Referenced Documents (purchase separately) The documents listed below are referenced within the subject standard but are not provided as part of the standard.

ASTM Standards

C1145 Terminology of Advanced Ceramics

C1161 Test Method for Flexural Strength of Advanced Ceramics at Ambient Temperature

C1322 Practice for Fractography and Characterization of Fracture Origins in Advanced Ceramics

C1368 Test Method for Determination of Slow Crack Growth Parameters of Advanced Ceramics by Constant Stress-Rate Strength Testing at Ambient Temperature

C1465 Test Method for Determination of Slow Crack Growth Parameters of Advanced Ceramics by Constant Stress-Rate Flexural Testing at Elevated Temperatures

E4 Practices for Force Verification of Testing Machines

E6 Terminology Relating to Methods of Mechanical Testing

E112 Test Methods for Determining Average Grain Size

E337 Test Method for Measuring Humidity with a Psychrometer (the Measurement of Wet- and Dry-Bulb Temperatures)

E399 Test Method for Linear-Elastic Plane-Strain Fracture Toughness K Ic of Metallic Materials

E1823 Terminology Relating to Fatigue and Fracture Testing


Keywords

Advanced ceramics; slow crack growth; slow crack growth parameters; time to failure; four-point flexure; flexural testing; constant stress testing; Advanced ceramics; Constant stress-rate flexural testing; Flexural testing--ceramics; Four-point flexure; Slow crack growth (SCG); Stress rupture; Time-to-failure (TTF); Advanced ceramics; Constant stress-rate flexural testing; Flexural testing--ceramics; Four-point flexure; Slow crack growth (SCG); Stress rupture; Time-to-failure (TTF);


ICS Code

ICS Number Code 81.060.30 (Advanced ceramics)


DOI: 10.1520/C1576-05R10

ASTM International is a member of CrossRef.

ASTM C1576

This book also exists in the following packages...

Year Publisher Title Annual Price
VAR
ASTM
[+] $1,011.53 Buy
VAR
ASTM
[+] $7,461.55 Buy

Subscription Information

MADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

Some features of MADCAD.com ASTM Standards Subscriptions are:

- Online access: With MADCAD.com’ s web based subscription service no downloads or installations are required. Access ASTM Standards from any browser on your computer, tablet or smart phone.

- Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.

 

For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

About ASTM

ASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide.

X