Cart (0)
  • No items in cart.
Total
$0
There is a technical issue about last added item. You can click "Report to us" button to let us know and we resolve the issue and return back to you or you can continue without last item via click to continue button.
Search book title
Enter keywords for book title search
Search book content
Enter keywords for book content search
Filters:
FORMAT
BOOKS
PACKAGES
EDITION
to
PUBLISHER
(1)
(317)
(572)
(43)
(234)
(969)
(643)
(1945)
(64)
(91921)
(54)
(535)
(117)
(31)
(20)
(19)
(92811)
(3)
(17)
(1)
(351)
(300)
(6023)
(239)
(16)
(5)
(1621)
(16)
(18)
(28)
(4)
 
(6)
(7)
(115)
(3)
(57)
(5)
(5)
(1)
(1)
(2)
(23)
(26)
(27)
(13)
(61)
(24)
(22)
(7)
(8)
(20)
(1)
(3)
(50)
(6)
(31)
CONTENT TYPE
 Act
 Admin Code
 Announcements
 Bill
 Book
 CADD File
 CAN
 CEU
 Charter
 Checklist
 City Code
 Code
 Commentary
 Comprehensive Plan
 Conference Paper
 County Code
 Course
 DHS Documents
 Document
 Errata
 Executive Regulation
 Federal Guideline
 Firm Content
 Guideline
 Handbook
 Interpretation
 Journal
 Land Use and Development
 Law
 Legislative Rule
 Local Amendment
 Local Code
 Local Document
 Local Regulation
 Local Standards
 Manual
 Model Code
 Model Standard
 Notice
 Ordinance
 Other
 Paperback
 PASS
 Periodicals
 PIN
 Plan
 Policy
 Product
 Program
 Provisions
 Requirements
 Revisions
 Rules & Regulations
 Standards
 State Amendment
 State Code
 State Manual
 State Plan
 State Standards
 Statute
 Study Guide
 Supplement
 Technical Bulletin
 All
  • ASTM
    E2394-11 Standard Practice for Maintenance, Renovation and Repair of Installed Asbestos Cement Products
    Edition: 2011
    $103.58
    Unlimited Users per year

Description of ASTM-E2394 2011

ASTM E2394 - 11

Standard Practice for Maintenance, Renovation and Repair of Installed Asbestos Cement Products

Active Standard ASTM E2394 | Developed by Subcommittee: D22.07

Book of Standards Volume: 11.07




ASTM E2394

Significance and Use

The inhalation of airborne asbestos fibers has been shown to cause asbestosis, lung cancer, and mesothelioma.

5.1.1 The U.S. Environmental Protection Agency reports that Effects on the lung are a major health concern from asbestos, as chronic (long-term) exposure to asbestos in humans via inhalation can result in a lung disease termed asbestosis. Asbestosis is characterized by shortness of breath and cough and may lead to severe impairment of respiratory function. Cancer is also a major concern from asbestos exposure, as inhalation exposure can cause lung cancer and mesothelioma (a rare cancer of the thin membranes lining the abdominal cavity and surrounding internal organs), and possibly gastrointestinal cancers in humans. EPA has classified asbestos as a Group A, known human carcinogen (1) .

The World Health Organization states: Exposure to asbestos occurs through inhalation of fibres primarily from contaminated air in the working environment, as well as from ambient air in the vicinity of point sources, or indoor air in housing and buildings containing friable asbestos materials. The highest levels of exposure occur during repackaging of asbestos containers, mixing with other raw materials and dry cutting of asbestos-containing products with abrasive tools (2) .

The World Bank states: Health hazards from breathing asbestos dust include asbestosis, a lung scarring disease, and various forms of cancer (including lung cancer and mesothelioma of the pleura and peritoneum). These diseases usually arise decades after the onset of asbestos exposure. Mesothelioma, a signal tumor for asbestos exposure, occurs among workers family members from dust on the workers clothes and among neighbors of asbestos air pollution point sources (3) .

Extensive litigation has occurred worldwide as a result of the health effects of asbestos over the past century, resulting in considerable economic consequences. The regulatory response to asbestos hazards has resulted in civil sanctions and criminal prosecution of violators.

Regarding the production and use of asbestos fiber:

The U.S. Geological Survey (USGS) reports: 'World consumption was relatively steady between 2003 and 2007, averaging 2.11 million metric tons (Mt). The leading consuming countries in 2007 were, in decreasing order tonnage, China (30 %), India (15 %), Russia (13 %), Kazakhstan and Brazil (5 % each), and Thailand, Uzbekistan, and Ukraine (4 % each). These eight countries accounted for about 80 % of world asbestos consumption in 2007. From 2003 through 2007, apparent consumption declined in most countries. However, there were significant increases in apparent consumption in China, India, and Uzbekistan between 2003 and 2007. In general, world asbestos consumption is likely to decline as more countries institute bans on its use (4) .

The World Health Organization also states: Bearing in mind that there is no evidence for a threshold for the carcinogenic effect of asbestos and the increased cancer risks have been observed in populations exposed to very low levels, the most efficient way to eliminate asbestos-related diseases is to stop using all types of asbestos. Continued use of asbestos-cement in the construction industry is of particular concern, because the workforce is large, it is difficult to control exposure, and in-place materials have the potential to deteriorate and pose a risk to those carrying out alterations, maintenance, and demolition (2) .

The Chrysotile (formerly Asbestos) Institute reports that: More than 90 % of the world production of chrysotile is used in the manufacture of chrysotile-cement, in the form of pipes, sheets, and shingles. These products are used in some sixty industrialized and developing countries (5) .

It follows that the installed base of asbestos-cement products worldwide is enormous and continues to grow. In other words, the problem of exposure to asbestos fibers from working with these materials is substantial and will remain significant for the foreseeable future.

The significance of this practice is that it provides work practices that protect worker and community health within the resources available in developing as well as industrialized countries. It relies as much as possible on tools, equipment, and supplies that are readily available without recourse to specialty suppliers. The techniques require careful and diligent workmanship but do not require the services of highly-skilled tradesmen.

This practice is intended to be used not only by construction workers and tradesmen in the performance of their work, but also by building owners and others as the basis for preparing contracts and tenders for activities included in the scope of this practice. It will also provide a foundation for government officials to develop regulations intended to protect worker and community health. Where such regulations already exist, of necessity they take precedence over this practice in event of a conflict.

The persons who are most at risk of exposure to airborne asbestos fibers are those who perform work on asbestos-cement products during maintenance, renovation, and repair operations. This practice places its primary emphasis on the protection of their health. However, other members of the community other workers and individuals in a building being renovated, residents of a house undergoing repairs, and unsuspecting bystanders are at risk to a lesser degree. By minimizing the risk to the worker performing the maintenance, renovation, and repair operations, the potential exposure of others is reduced as well.

It is expected that employers will comply voluntarily with the provisions of this practice in the interest of protecting worker and community health and reducing their own liability. However, the existence of a regulatory infrastructure for occupational and community health greatly enhances compliance with measures to reduce exposure to asbestos fibers and other toxic materials. In some countries, such a system is highly advanced, but in others it needs to be created or further developed. These efforts can be furthered by referencing this practice in laws and regulations and requiring compliance with its provisions.

Issuance of construction permits can be made contingent on showing evidence of worker training, experience in the use of these procedures, and adequate resources (manpower, equipment, and supplies) to use them properly.

A contractual framework that references this practice and requires use of its procedures ensures the building owner or other party securing construction services under a contract or tender arrangement that the responding offeror has been informed as to the expected level of performance when working with asbestos-cement products.

1. Scope

1.1 This practice describes work practices for asbestos-cement products when maintenance, renovation, and repair are required. This includes common tasks such as drilling and cutting holes in roofing, siding, pipes, etc. that can result in exposure to asbestos fibers if not done carefully. These work practices are supplemented and facilitated by the regulatory, contractual, training, and supervisory provisions of this practice.

1.2 Materials covered include those installed in or on buildings and facilities and those used in external infrastructure such as water, wastewater, and electrical distribution systems. Also included is pavement made from asbestos-cement manufacturing waste.

1.3 The work practices described herein are intended for use only with asbestos-cement products already installed in buildings, facilities, and external infrastructure. They are not intended for use in construction or renovation involving the installation of new asbestos-cement products.

1.4 The work practices are primarily intended to be used in situations where small amounts of asbestos-cement products must be removed or disturbed in order to perform maintenance, renovation, or repair necessary for operation of the building, facility, or infrastructure.

1.5 The work practices described herein are also applicable for use where the primary objective is the removal of asbestos-cement products from the building or other location, particularly the use of wet methods and other means of dust and fiber control.

1.6 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.

1.7 Warning Asbestos fibers are acknowledged carcinogens. Breathing asbestos fibers can result in disease of the lungs including asbestosis, lung cancer, and mesothelioma. Precautions in this practice should be taken to avoid creating and breathing airborne asbestos particles from materials known or suspected to contain asbestos. Comply with all applicable regulatory requirements addressing asbestos.

1.8 This practice does not address safety hazards associated with working on asbestos-cement products such as falling through roof panels or trench cave-ins. The use of power tools presents possible electrical hazards, particularly in wet environments. These and other safety hazards must be considered and controlled in compliance with the employer's policies and applicable regulations.

1.9 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.


2. Referenced Documents (purchase separately) The documents listed below are referenced within the subject standard but are not provided as part of the standard.

Other Standards

Guidance Manual Asbestos Operations and Maintenance Work Practices Available from National Institute of Building Sciences (NIBS), 1090 Vermont Avenue, NW, Suite 700, Washington DC 20005-4905.

ASTM Standards

E1368 Practice for Visual Inspection of Asbestos Abatement Projects

E2356 Practice for Comprehensive Building Asbestos Surveys


Keywords

Asbestos-cement; Building materials/applications;


ICS Code

ICS Number Code 91.100.40 (Products in fibre-reinforced cement)


DOI: 10.1520/E2394-11

ASTM International is a member of CrossRef.

ASTM E2394

The following editions for this book are also available...

This book also exists in the following packages...

Year Publisher Title Annual Price
VAR
ASTM
[+] $1,164.67 Buy
VAR
ASTM
[+] $5,933.17 Buy

Subscription Information

MADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

Some features of MADCAD.com ASTM Standards Subscriptions are:

- Online access: With MADCAD.com’ s web based subscription service no downloads or installations are required. Access ASTM Standards from any browser on your computer, tablet or smart phone.

- Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.

 

For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

About ASTM

ASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide.

X