Cart (0)
  • No items in cart.
Subtotal
$0
There is a technical issue about last added item. You can click "Report to us" button to let us know and we resolve the issue and return back to you or you can continue without last item via click to continue button.
Search book title
Enter keywords for book title search
Search book content
Enter keywords for book content search
Filters:
FORMAT
BOOKS
PACKAGES
EDITION
to
PUBLISHER
(1)
(316)
(569)
(43)
(234)
(969)
(643)
(1935)
(64)
(91921)
(54)
(535)
(117)
(28)
(20)
(19)
(92193)
(3)
(17)
(1)
(351)
(298)
(6023)
(239)
(16)
(5)
(1619)
(16)
(18)
(28)
(4)
 
(6)
(7)
(115)
(3)
(57)
(5)
(5)
(1)
(1)
(2)
(23)
(26)
(27)
(13)
(61)
(24)
(22)
(7)
(8)
(20)
(1)
(3)
(50)
(6)
(31)
CONTENT TYPE
 Act
 Admin Code
 Announcements
 Bill
 Book
 CADD File
 CAN
 CEU
 Charter
 Checklist
 City Code
 Code
 Commentary
 Comprehensive Plan
 Conference Paper
 County Code
 Course
 DHS Documents
 Document
 Errata
 Executive Regulation
 Federal Guideline
 Firm Content
 Guideline
 Handbook
 Interpretation
 Journal
 Land Use and Development
 Law
 Legislative Rule
 Local Amendment
 Local Code
 Local Document
 Local Regulation
 Local Standards
 Manual
 Model Code
 Model Standard
 Notice
 Ordinance
 Other
 Paperback
 PASS
 Periodicals
 PIN
 Plan
 Policy
 Product
 Program
 Provisions
 Requirements
 Revisions
 Rules & Regulations
 Standards
 State Amendment
 State Code
 State Manual
 State Plan
 State Standards
 Statute
 Study Guide
 Supplement
 Technical Bulletin
 All
  • ASTM
    D6639-18 Standard Guide for Using the Frequency Domain Electromagnetic Method for Subsurface Site Characterizations
    Edition: 2018
    $86.11
    Unlimited Users per year

Description of ASTM-D6639 2018

ASTM D6639-18

Active Standard: Standard Guide for Using the Frequency Domain Electromagnetic Method for Subsurface Site Characterizations




ASTM D6639

Scope

1.1 Purpose and Application: 

1.1.1 This guide summarizes the equipment, field procedures, and interpretation methods for the assessment of subsurface conditions using the frequency domain electromagnetic (FDEM) method.

1.1.2 FDEM measurements as described in this standard guide are applicable to mapping subsurface conditions for geologic, geotechnical, hydrologic, environmental, agricultural, archaeological and forensic site characterizations as well as mineral exploration.

1.1.3 The FDEM method is sometimes used to map such diverse geologic conditions as depth to bedrock, fractures and fault zones, voids and sinkholes, soil and rock properties, and saline intrusion as well as man-induced environmental conditions including buried drums, underground storage tanks (USTs), landfill boundaries and conductive groundwater contamination.

1.1.4 The FDEM method utilizes the secondary magnetic field induced in the earth by a time-varying primary magnetic field to explore the subsurface. It measures the amplitude and phase of the induced field at various frequencies. FDEM instruments typically measure two components of the secondary magnetic field: a component in-phase with the primary field and a component 90° out-of-phase (quadrature component) with the primary field (Kearey and Brook 1991). Generally, the in-phase response is more sensitive to metallic items (either above or below the ground surface) while the quadrature response is more sensitive to geologic variations in the subsurface. However, both components are, to some degree, affected by both metallic and geologic features. FDEM measurements therefore are dependent on the electrical properties of the subsurface soil and rock or buried man-made objects as well as the orientation of any subsurface geological features or man-made objects. In many cases, the FDEM measurements can be used to identify the subsurface structure or object. This method is used only when it is expected that the subsurface soil or rock, man-made materials or geologic structure can be characterized by differences in electrical conductivity.

1.1.5 The FDEM method may be used instead of the Direct Current Resistivity method (Guide D6431) when surface soils are excessively insulating (for example, dry or frozen) or a layer of asphalt or plastic or other logistical constraints prevent electrode to soil contact.

1.2 Limitations: 

1.2.1 This standard guide provides an overview of the FDEM method using coplanar coils at or near ground level and has been referred to by other names including Slingram, HLEM (horizontal loop electromagnetic) and Ground Conductivity methods. This guide does not address the details of the electromagnetic theory, field procedures or interpretation of the data. References are included that cover these aspects in greater detail and are considered an essential part of this guide (Grant and West, 1965; Wait, 1982; Kearey and Brook, 1991; Milsom, 1996; Ward, 1990). It is recommended that the user of the FDEM method review the relevant material pertaining to their particular application. ASTM standards that should also be consulted include Guide D420, Terminology D653, Guide D5730, Guide D5753, Practice D6235, Guide D6429, and Guide D6431.

1.2.2 This guide is limited to frequency domain instruments using a coplanar orientation of the transmitting and receiving coils in either the horizontal dipole (HD) mode with coils vertical, or the vertical dipole (VD) mode with coils horizontal (Fig. 2). It does not include coaxial or asymmetrical coil orientations, which are sometimes used for special applications (Grant and West 1965).

FIG. 1 Principles of Electromagnetic Induction in Ground Conductivity Measurements (Sheriff, 1989)

FIG. 2 Relative Response of Horizontal and Vertical Dipole Coil Orientations (McNeill, 1980)

1.2.3 This guide is limited to the use of frequency domain instruments in which the ratio of the induced secondary magnetic field to the primary magnetic field is directly proportional to the ground's bulk or apparent conductivity (see 5.1.4). Instruments that give a direct measurement of the apparent ground conductivity are commonly referred to as Ground Conductivity Meters (GCMs) that are designed to operate within the “low induction number approximation.” Multi-frequency instruments operating within and outside the low induction number approximation provide the ratio of the secondary to primary magnetic field, which can be used to calculate the ground conductivity.

1.2.4 The FDEM (inductive) method has been adapted for a number of special uses within a borehole, on water, or airborne. Discussions of these adaptations or methods are not included in this guide.

1.2.5 The approaches suggested in this guide for the frequency domain method are the most commonly used, widely accepted and proven; however other lesser-known or specialized techniques may be substituted if technically sound and documented.

1.2.6 Technical limitations and cultural interferences that restrict or limit the use of the frequency domain method are discussed in section 5.4.

1.2.7 This guide offers an organized collection of information or a series of options and does not recommend a specific course of action. This document cannot replace education, experience, and professional judgment. Not all aspects of this guide may be applicable in all circumstances. This ASTM standard is not intended to represent or replace the standard of care by which the adequacy of a given professional service must be judged without consideration of a project's many unique aspects. The word standard in the title of this document means that the document has been approved through the ASTM consensus process.

1.3 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. Reporting of test results in units other than SI shall not be regarded as nonconformance with this test method.

1.4 Precautions: 

1.4.1 If the method is used at sites with hazardous materials, operations, or equipment, it is the responsibility of the user of this guide to establish appropriate safety and health practices and to determine the applicability of regulations prior to use.

1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.

1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.


Keywords

electromagnetics; frequency domain electromagnetics; geophysics; ground conductivity; surface geophysics;


ICS Code

ICS Number Code 93.020 (Earthworks. Excavations. Foundation construction. Underground works)


DOI: 10.1520/D6639-18

The following editions for this book are also available...

This book also exists in the following packages...

Year Publisher Title Annual Price
VAR
ASTM
[+] $1,235.20 Buy
VAR
ASTM
[+] $10,801.41 Buy
VAR
ASTM
[+] $5,812.65 Buy

Subscription Information

MADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

Some features of MADCAD.com ASTM Standards Subscriptions are:

- Online access: With MADCAD.com’ s web based subscription service no downloads or installations are required. Access ASTM Standards from any browser on your computer, tablet or smart phone.

- Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.

 

For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

About ASTM

ASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide.

X