Cart (0)
  • No items in cart.
Total
$0
There is a technical issue about last added item. You can click "Report to us" button to let us know and we resolve the issue and return back to you or you can continue without last item via click to continue button.
Search book title
Enter keywords for book title search
Search book content
Enter keywords for book content search
Filters:
FORMAT
BOOKS
PACKAGES
EDITION
to
PUBLISHER
(1)
(317)
(572)
(43)
(234)
(969)
(643)
(2114)
(64)
(92448)
(54)
(535)
(117)
(31)
(20)
(19)
(92811)
(3)
(17)
(1)
(351)
(300)
(6023)
(239)
(16)
(5)
(1621)
(16)
(18)
(28)
(4)
 
(6)
(7)
(115)
(3)
(57)
(5)
(5)
(1)
(1)
(2)
(23)
(26)
(27)
(13)
(61)
(24)
(22)
(7)
(8)
(20)
(1)
(3)
(50)
(6)
(31)
CONTENT TYPE
 Act
 Admin Code
 Announcements
 Bill
 Book
 CADD File
 CAN
 CEU
 Charter
 Checklist
 City Code
 Code
 Commentary
 Comprehensive Plan
 Conference Paper
 County Code
 Course
 DHS Documents
 Document
 Errata
 Executive Regulation
 Federal Guideline
 Firm Content
 Guideline
 Handbook
 Interpretation
 Journal
 Land Use and Development
 Law
 Legislative Rule
 Local Amendment
 Local Code
 Local Document
 Local Regulation
 Local Standards
 Manual
 Model Code
 Model Standard
 Notice
 Ordinance
 Other
 Paperback
 PASS
 Periodicals
 PIN
 Plan
 Policy
 Product
 Program
 Provisions
 Requirements
 Revisions
 Rules & Regulations
 Standards
 State Amendment
 State Code
 State Manual
 State Plan
 State Standards
 Statute
 Study Guide
 Supplement
 Technical Bulletin
 All
  • ASTM
    D6034-96(2010)e1 Standard Test Method (Analytical Procedure) for Determining the Efficiency of a Production Well in a Confined Aquifer from a Constant Rate Pumping Test
    Edition: 2010
    $93.60
    Unlimited Users per year

Description of ASTM-D6034 2010

ASTM D6034 - 96(2010)e1

Standard Test Method (Analytical Procedure) for Determining the Efficiency of a Production Well in a Confined Aquifer from a Constant Rate Pumping Test

Active Standard ASTM D6034 | Developed by Subcommittee: D18.21

Book of Standards Volume: 04.09




ASTM D6034

Significance and Use

This test method allows the user to compute the true hydraulic efficiency of a pumped well in a confined aquifer from a constant rate pumping test. The procedures described constitute the only valid method of determining well efficiency. Some practitioners have confused well efficiency with percentage of head loss associated with laminar flow, a parameter commonly determined from a step-drawdown test. Well efficiency, however, cannot be determined from a step-drawdown test but only can be determined from a constant rate test.

Assumptions :

Control well discharges at a constant rate, Q .

Control well is of infinitesimal diameter.

Data are obtained from the control well and, if available, a number of observation wells.

The aquifer is confined, homogeneous, and areally extensive. The aquifer may be anisotropic, and if so, the directions of maximum and minimum hydraulic conductivity are horizontal and vertical, respectively.

Discharge from the well is derived exclusively from storage in the aquifer.

Calculation Requirements For the special case of partially penetrating wells, application of this test method may be computationally intensive. The function f s shown in Eq 6 must be evaluated using arbitrary input parameters. It is not practical to use existing, somewhat limited, tables of values for f s and, because this equation is rather formidable, it is not readily tractable by hand. Because of this, it is assumed the practitioner using this test method will have available a computerized procedure for evaluating the function f s . This can be accomplished using commercially available mathematical software including some spreadsheet applications or by writing programs in languages, such as Fortran or C . If calculating f s is not practical, it is possible to substitute the Kozeny equation for the Hantush equation as previously described.

1. Scope

1.1 This test method describes an analytical procedure for determining the hydraulic efficiency of a production well in a confined aquifer. It involves comparing the actual drawdown in the well to the theoretical minimum drawdown achievable and is based upon data and aquifer coefficients obtained from a constant rate pumping test.

1.2 This analytical procedure is used in conjunction with the field procedure, Test Method D4050 .

1.3 The values stated in inch-pound units are to be regarded as standard, except as noted below. The values given in parentheses are mathematical conversions to SI units, which are provided for information only and are not considered standard.

1.3.1 The gravitational system of inch-pound units is used when dealing with inch-pound units. In this system, the pound (lbf) represents a unit of force (weight), while the unit for mass is slugs.

1.4 Limitations The limitations of the technique for determination of well efficiency are related primarily to the correspondence between the field situation and the simplifying assumption of this test method.

1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.


2. Referenced Documents (purchase separately) The documents listed below are referenced within the subject standard but are not provided as part of the standard.

ASTM Standards

D653 Terminology Relating to Soil, Rock, and Contained Fluids

D4050 Test Method for (Field Procedure) for Withdrawal and Injection Well Tests for Determining Hydraulic Properties of Aquifer Systems

D5521 Guide for Development of Ground-Water Monitoring Wells in Granular Aquifers


Keywords

anisotropy; aquifers; aquifer tests; control wells; groundwater; hydraulic conductivity; observation wells; storage coefficient; transmissivity; well efficiency: Anisotropy; Aquifers; Control wells; Ground water; Hydraulic conductivity/transmissivity; Observation wells; Storage--aquifers; Transmissivity; Well efficiency;


ICS Code

ICS Number Code 93.160 (Hydraulic construction)


DOI: 10.1520/D6034-96R10E01

ASTM International is a member of CrossRef.

ASTM D6034

This book also exists in the following packages...

Year Publisher Title Annual Price
VAR
ASTM
[+] $1,235.20 Buy
VAR
ASTM
[+] $10,801.41 Buy
VAR
ASTM
[+] $5,812.65 Buy

Subscription Information

MADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

Some features of MADCAD.com ASTM Standards Subscriptions are:

- Online access: With MADCAD.com’ s web based subscription service no downloads or installations are required. Access ASTM Standards from any browser on your computer, tablet or smart phone.

- Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.

 

For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

About ASTM

ASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide.

X