Cart (0)
  • No items in cart.
Subtotal
$0
There is a technical issue about last added item. You can click "Report to us" button to let us know and we resolve the issue and return back to you or you can continue without last item via click to continue button.
Search book title
Enter keywords for book title search
Search book content
Enter keywords for book content search
Filters:
FORMAT
BOOKS
PACKAGES
EDITION
to
PUBLISHER
(1)
(316)
(569)
(43)
(234)
(969)
(643)
(1935)
(64)
(91921)
(54)
(535)
(117)
(28)
(20)
(19)
(92193)
(3)
(17)
(1)
(351)
(298)
(6023)
(239)
(16)
(5)
(1619)
(16)
(18)
(28)
(4)
 
(6)
(7)
(115)
(3)
(57)
(5)
(5)
(1)
(1)
(2)
(23)
(26)
(27)
(13)
(61)
(24)
(22)
(7)
(8)
(20)
(1)
(3)
(50)
(6)
(31)
CONTENT TYPE
 Act
 Admin Code
 Announcements
 Bill
 Book
 CADD File
 CAN
 CEU
 Charter
 Checklist
 City Code
 Code
 Commentary
 Comprehensive Plan
 Conference Paper
 County Code
 Course
 DHS Documents
 Document
 Errata
 Executive Regulation
 Federal Guideline
 Firm Content
 Guideline
 Handbook
 Interpretation
 Journal
 Land Use and Development
 Law
 Legislative Rule
 Local Amendment
 Local Code
 Local Document
 Local Regulation
 Local Standards
 Manual
 Model Code
 Model Standard
 Notice
 Ordinance
 Other
 Paperback
 PASS
 Periodicals
 PIN
 Plan
 Policy
 Product
 Program
 Provisions
 Requirements
 Revisions
 Rules & Regulations
 Standards
 State Amendment
 State Code
 State Manual
 State Plan
 State Standards
 Statute
 Study Guide
 Supplement
 Technical Bulletin
 All
  • ACI
    544.6R-15 Report on Design and Construction of Steel Fiber-Reinforced Concrete Elevated Slabs
    Edition: 2015
    $114.03
    / user per year

Content Description

Construction of slabs in areas with weak soil conditions has commonly used pile-supported slab structural design so that the adverse effects of soil-structure interaction in terms of differential settlement, cracking, or long-term serviceability problems are avoided. In this application, the construction of slabs on closely spaced pile caps (typical span-depth ratios between 8 and 30) is referred to as elevated ground slabs (EGSs). These slabs may be subjected to moderately high loading, such as concentrated point loading of up to 44 kip (150 kN) and uniformly distributed loadings of 1000 lb/ft2 (50 kN/m2). The dynamic loadings may be due to moving loads such as forklifts, travel lifts, and other material handling equipment. Fiber-reinforced concrete (FRC) has been successfully used to address the structural design of these slabs. Based on the knowledge gained, the area has been extended to a construction practice for slabs supported by columns as well. Applications are further extended to multi-story building applications. This report addresses the methodology for analysis, design, and construction of steel FRC (SFRC) slabs supported on piles or columns (also called elevated SFRC [E-SFRC]). Sections of the report address the history, practice, applications, material testing, full-scale testing, and certifications. By compiling the practice and knowledge in the analysis design with FRC materials, the steps in the design approach based on ultimate strength approach using two-way slab mechanisms are presented. The behavior of a two-way system may not require the flexural strength of conventional reinforced concrete (RC) because of redistribution, redundancy, and failure mechanisms. Methods of construction, curing, and full-scale testing of slabs are also presented. A high dosage of deformed steel fibers (85 to 170 lb/yd3 [50 to 100 kg/m3]) is recommended as the primary method of reinforcement. Procedures for obtaining material properties from round panel tests and flexural tests are addressed, and finite element models for structural analysis of the slabs are discussed. Results of several full-scale testing procedures that are used for validation of the methods proposed are also presented. Keywords: ductility; durability; fiber-reinforced cement-based materials; fibers; flexural strength; jointless slab; moment-curvature response; plastic shrinkage; reinforcing materials; shrinkage; shrinkage cracking; slab-onground; slab-on-piles; steel fibers; steel fiber-reinforced concrete; toughness; yield line analysis.

This book also exists in the following packages...

Year Publisher Title Annual Price
VAR
ACI
[+] $4,830.00 Buy
VAR
ACI
[+] $699.59 Buy
VAR
ACI
[+] $3,120.17 Buy

About ACI

Founded in 1904 and headquartered in Farmington Hills, Michigan, USA, the American Concrete Institute is a leading authority and resource worldwide for the development and distribution of consensus-based standards, technical resources, educational & training programs, certification programs, and proven expertise for individuals and organizations involved in concrete design, construction, and materials, who share a commitment to pursuing the best use of concrete. ACI has over 95 chapters, 110 student chapters, and nearly 20,000 members spanning over 120 countries.

X