Cart (0)
  • No items in cart.
Total
$0
There is a technical issue about last added item. You can click "Report to us" button to let us know and we resolve the issue and return back to you or you can continue without last item via click to continue button.
Search book title
Enter keywords for book title search
Search book content
Enter keywords for book content search
Filters:
FORMAT
BOOKS
PACKAGES
EDITION
to
PUBLISHER
(1)
(317)
(572)
(43)
(234)
(969)
(643)
(1945)
(64)
(91921)
(54)
(535)
(117)
(31)
(20)
(19)
(92811)
(3)
(17)
(1)
(351)
(300)
(6023)
(239)
(16)
(5)
(1621)
(16)
(18)
(28)
(4)
 
(6)
(7)
(115)
(3)
(57)
(5)
(5)
(1)
(1)
(2)
(23)
(26)
(27)
(13)
(61)
(24)
(22)
(7)
(8)
(20)
(1)
(3)
(50)
(6)
(31)
CONTENT TYPE
 Act
 Admin Code
 Announcements
 Bill
 Book
 CADD File
 CAN
 CEU
 Charter
 Checklist
 City Code
 Code
 Commentary
 Comprehensive Plan
 Conference Paper
 County Code
 Course
 DHS Documents
 Document
 Errata
 Executive Regulation
 Federal Guideline
 Firm Content
 Guideline
 Handbook
 Interpretation
 Journal
 Land Use and Development
 Law
 Legislative Rule
 Local Amendment
 Local Code
 Local Document
 Local Regulation
 Local Standards
 Manual
 Model Code
 Model Standard
 Notice
 Ordinance
 Other
 Paperback
 PASS
 Periodicals
 PIN
 Plan
 Policy
 Product
 Program
 Provisions
 Requirements
 Revisions
 Rules & Regulations
 Standards
 State Amendment
 State Code
 State Manual
 State Plan
 State Standards
 Statute
 Study Guide
 Supplement
 Technical Bulletin
 All
  • ASTM
    F1529-02 Standard Test Method for Sheet Resistance Uniformity Evaluation by In-Line Four-Point Probe with the Dual-Configuration Procedure
    Edition: 2002
    $103.58
    Unlimited Users per year

Description of ASTM-F1529 2002

ASTM F1529-02

Historical Standard: Standard Test Method for Sheet Resistance Uniformity Evaluation by In-Line Four-Point Probe with the Dual-Configuration Procedure




ASTM F1529

Scope

1.1 This test method covers the direct measurement of the sheet resistance and its variation for all but the periphery (amounting to three probe separations) for circular conducting layers pertinent to silicon semiconductor technology. These layers may be fabricated on substrates of any diameter that is capable of being securely mounted on a prober stage.

Note 1—The equation used to calculate the sheet resistance data from measurements is not perfectly accurate out to the edge of the wafer for probes oriented at an arbitrary angle with respect to a wafer radius. Further, automatic instruments on which this test method will be performed may not have perfect centering of the wafer on the measurement stage. These factors require that the periphery of the layer being measured be excluded. Also, many thin film processes use wafer clamps that preclude forming layers out to the edge of the substrate. The edge exclusion in this test method applies to the film that is being measured, rather than to the substrate. The equation used is based on mathematics developed for layers of circular shape. It is expected to work well for layers of other shapes such as rectangular, if edge exclusion requirements are met; however, the accuracy near the edge of other shapes has not been demonstrated (2).

1.2 This test method is intended primarily for assessing the uniformity of layers formed by diffusion, epitaxy, ion implant and chemical vapor, or other deposition processes on a silicon substrate. The deposited film, which may be single crystal, polycrystalline or amorphous silicon, or a metal film, must be electrically isolated from the substrate. This can be accomplished if the layer is of opposite conductivity type from the substrate or is deposited over a dielectric layer such as silicon dioxide. This test method is capable of measuring films as thin as 0.05 m, but particular care is required for establishing reliable measurements for most films in the range below 0.2 m. Films that have a thickness up to half the probe separation can be measured without the use of a thickness-related correction factor. It may give misleading results for films formed by silicon on insulator technologies because of charge or charge trapping in the insulator.

1.3 This test method can be used to measure the sheet resistance uniformity of bulk substrates. However, the thickness of the substrate must be known to be constant or must be measured at all positions where sheet resistance values are measured in order to calculate relative variations in resistance reliably.

Note 2—The thickness correction factor for layers that are thicker than 0.5 times the probe spacing is known to vary more rapidly than that for single-configuration four-probe measurements, but such a correction has not yet been published. Until such a correction is published, resistivity values determined by the dual-configuration method will not be accurate for these thicker specimens; however, if the wafer has uniform thickness, variations of resistivity can still be determined by this test method.

1.4 This test method can be used to measure sheet resistance values from below 10 m for metal films, to over 25 000 for thin silicon films. However, for films at the upper end of this resistance range, and for films toward the low end of the thickness range, the interpretation of the sheet resistance values may not be straightforward due to various semiconductor effects (3, 4, 5).

Note 3—The principles of this test method are also applicable to other semiconductor materials, but the appropriate conditions and the expected precision have not been established.

1.5 This test method uses two different electrical configurations of the four-point probe at each measurement location. It does not require measurement of probe location on the wafer, or probe separations, or of wafer diameter (except to determine edge exclusion for measurement-site selection) as do other four-point probe methods such as Test Methods F 81, F 84 and F 374. By use of electrical data from the two different configurations at each location, the method is self-calibrating with respect to the geometrical parameters (1).

1.6 This test method is intended to be used on automated wafer testing systems that use R-theta or X-Y stage positioning for the measurements. The rapid calculations for sheet resistance used in this test method are based on more extensive calculations, and are within 0.1 % of the results of those more extensive calculations, even if the probes are not oriented parallel or perpendicular to a wafer radius, providing that the probes are more than 3-probe spacings from the edge of the layer being measured (1), (2) (see NOTE 1).

1.7 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.

1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.


Keywords

epitaxy; four-point probe; ion implant; metallization; polysilicon; sheet resistance; silicon


ICS Code

ICS Number Code 29.045 (Semiconducting materials)


DOI: 10.1520/F1529-02

The following editions for this book are also available...

This book also exists in the following packages...

Year Publisher Title Annual Price
VAR
ASTM
[+] $971.23 Buy
VAR
ASTM
[+] $2,452.26 Buy

Subscription Information

MADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

Some features of MADCAD.com ASTM Standards Subscriptions are:

- Online access: With MADCAD.com’ s web based subscription service no downloads or installations are required. Access ASTM Standards from any browser on your computer, tablet or smart phone.

- Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.

 

For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

About ASTM

ASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide.

X