Cart (0)
  • No items in cart.
Subtotal
$0
There is a technical issue about last added item. You can click "Report to us" button to let us know and we resolve the issue and return back to you or you can continue without last item via click to continue button.
Search book title
Enter keywords for book title search
Search book content
Enter keywords for book content search
Filters:
FORMAT
BOOKS
PACKAGES
EDITION
to
PUBLISHER
(1)
(316)
(569)
(43)
(234)
(969)
(643)
(1935)
(64)
(91921)
(54)
(535)
(117)
(28)
(20)
(19)
(92193)
(3)
(17)
(1)
(351)
(298)
(6023)
(239)
(16)
(5)
(1619)
(16)
(18)
(28)
(4)
 
(6)
(7)
(115)
(3)
(57)
(5)
(5)
(1)
(1)
(2)
(23)
(26)
(27)
(13)
(61)
(24)
(22)
(7)
(8)
(20)
(1)
(3)
(50)
(6)
(31)
CONTENT TYPE
 Act
 Admin Code
 Announcements
 Bill
 Book
 CADD File
 CAN
 CEU
 Charter
 Checklist
 City Code
 Code
 Commentary
 Comprehensive Plan
 Conference Paper
 County Code
 Course
 DHS Documents
 Document
 Errata
 Executive Regulation
 Federal Guideline
 Firm Content
 Guideline
 Handbook
 Interpretation
 Journal
 Land Use and Development
 Law
 Legislative Rule
 Local Amendment
 Local Code
 Local Document
 Local Regulation
 Local Standards
 Manual
 Model Code
 Model Standard
 Notice
 Ordinance
 Other
 Paperback
 PASS
 Periodicals
 PIN
 Plan
 Policy
 Product
 Program
 Provisions
 Requirements
 Revisions
 Rules & Regulations
 Standards
 State Amendment
 State Code
 State Manual
 State Plan
 State Standards
 Statute
 Study Guide
 Supplement
 Technical Bulletin
 All
  • ASTM
    E606-92(2004)e1 Standard Practice for Strain-Controlled Fatigue Testing
    Edition: 2004
    $103.58
    Unlimited Users per year

Description of ASTM-E606 2004

ASTM E606-92(2004)e1

Historical Standard: ASTM E606-92(2004)e1 Standard Practice for Strain-Controlled Fatigue Testing

SUPERSEDED (see Active link, below)




1. Scope

1.1 This practice covers the determination of fatigue properties of nominally homogeneous materials by the use of uniaxially loaded test specimens. It is intended as a guide for fatigue testing performed in support of such activities as materials research and development, mechanical design, process and quality control, product performance, and failure analysis. While this practice is intended primarily for strain-controlled fatigue testing, some sections may provide useful information for load-controlled or stress-controlled testing.

1.2 The use of this practice is limited to specimens and does not cover testing of full-scale components, structures, or consumer products.

1.3 This practice is applicable to temperatures and strain rates for which the magnitudes of time-dependent inelastic strains are on the same order or less than the magnitudes of time-independent inelastic strains. No restrictions are placed on environmental factors such as temperature, pressure, humidity, medium, and others, provided they are controlled throughout the test, do not cause loss of or change in dimension with time, and are detailed in the data report.

Note 1-The term inelastic is used herein to refer to all nonelastic strains. The term plastic is used herein to refer only to the time-independent (that is, noncreep) component of inelastic strain. To truly determine a time-independent strain the load would have to be applied instantaneously, which is not possible. A useful engineering estimate of time-independent strain can be obtained when the strain rate exceeds some value. For example, a strain rate of 1 X 10 -3 sec -1 is often used for this purpose. This value should increase with increasing test temperature.

1.4 This practice is restricted to the testing of axially loaded uniform gage section test specimens as shown in Fig. 1(a). Testing is limited to strain-controlled cycling. The practice may be applied to hourglass specimens, see Fig. 1(b), but the user is cautioned about uncertainties in data analysis and interpretation. Testing is done primarily under constant amplitude cycling and may contain interspersed hold times at repeated intervals. The practice may be adapted to guide testing for more general cases where strain or temperature may vary according to application specific histories. Data analysis may not follow this practice in such cases.


2. Referenced Documents (purchase separately) The documents listed below are referenced within the subject standard but are not provided as part of the standard.

ASTM Standards

A370 Test Methods and Definitions for Mechanical Testing of Steel Products

E3 Practice for Preparation of Metallographic Specimens

E4 Practices for Force Verification of Testing Machines

E8 Test Methods for Tension Testing of Metallic Materials

E9 Test Methods of Compression Testing of Metallic Materials at Room Temperature

E83 Practice for Verification and Classification of Extensometer System

E111 Test Method for Youngs Modulus, Tangent Modulus, and Chord Modulus

E112 Test Methods for Determining Average Grain Size

E132 Test Method for Poissons Ratio at Room Temperature

E157 Practice for Assigning Crystallographic Phase Designations in Metallic Systems

E177 Practice for Use of the Terms Precision and Bias in ASTM Test Methods

E209 Practice for Compression Tests of Metallic Materials at Elevated Temperatures with Conventional or Rapid Heating Rates and Strain Rates

E337 Test Method for Measuring Humidity with a Psychrometer (the Measurement of Wet- and Dry-Bulb Temperatures)

E384 Test Method for Microindentation Hardness of Materials

E399 Test Method for Plane-Strain Fracture Toughness of Metallic Materials

E466 Practice for Conducting Force Controlled Constant Amplitude Axial Fatigue Tests of Metallic Materials

E467 Practice for Verification of Constant Amplitude Dynamic Forces in an Axial Fatigue Testing System

E468 Practice for Presentation of Constant Amplitude Fatigue Test Results for Metallic Materials

E691 Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method

E739 Practice for Statistical Analysis of Linear or Linearized Stress-Life ( S-N) and Strain-Life (-N) Fatigue Data

E1012 Practice for Verification of Specimen Alignment Under Tensile Loading

E1049 Practices for Cycle Counting in Fatigue Analysis

E1823 Terminology Relating to Fatigue and Fracture Testing


Keywords

Fatigue; metallic materials, constant-amplitude, low-cycle testing, with; uniaxially-loaded specimens, practice;


ICS Code

ICS Number Code 77.040.10 (Mechanical testing of metals)


DOI: 10.1520/E0606-92R04E01

ASTM International is a member of CrossRef.


This book also exists in the following packages...

Year Publisher Title Annual Price
VAR
ASTM
[+] $1,251.32 Buy
VAR
ASTM
[+] $4,507.56 Buy

Subscription Information

MADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

Some features of MADCAD.com ASTM Standards Subscriptions are:

- Online access: With MADCAD.com’ s web based subscription service no downloads or installations are required. Access ASTM Standards from any browser on your computer, tablet or smart phone.

- Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.

 

For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

About ASTM

ASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide.

X