Cart (0)
  • No items in cart.
Total
$0
There is a technical issue about last added item. You can click "Report to us" button to let us know and we resolve the issue and return back to you or you can continue without last item via click to continue button.
Search book title
Enter keywords for book title search
Search book content
Enter keywords for book content search
Filters:
FORMAT
BOOKS
PACKAGES
EDITION
to
PUBLISHER
(1)
(317)
(572)
(43)
(234)
(969)
(643)
(1945)
(64)
(91921)
(54)
(535)
(117)
(31)
(20)
(19)
(92811)
(3)
(17)
(1)
(351)
(300)
(6023)
(239)
(16)
(5)
(1621)
(16)
(18)
(28)
(4)
 
(6)
(7)
(115)
(3)
(57)
(5)
(5)
(1)
(1)
(2)
(23)
(26)
(27)
(13)
(61)
(24)
(22)
(7)
(8)
(20)
(1)
(3)
(50)
(6)
(31)
CONTENT TYPE
 Act
 Admin Code
 Announcements
 Bill
 Book
 CADD File
 CAN
 CEU
 Charter
 Checklist
 City Code
 Code
 Commentary
 Comprehensive Plan
 Conference Paper
 County Code
 Course
 DHS Documents
 Document
 Errata
 Executive Regulation
 Federal Guideline
 Firm Content
 Guideline
 Handbook
 Interpretation
 Journal
 Land Use and Development
 Law
 Legislative Rule
 Local Amendment
 Local Code
 Local Document
 Local Regulation
 Local Standards
 Manual
 Model Code
 Model Standard
 Notice
 Ordinance
 Other
 Paperback
 PASS
 Periodicals
 PIN
 Plan
 Policy
 Product
 Program
 Provisions
 Requirements
 Revisions
 Rules & Regulations
 Standards
 State Amendment
 State Code
 State Manual
 State Plan
 State Standards
 Statute
 Study Guide
 Supplement
 Technical Bulletin
 All
  • ASTM
    E2854-12 Standard Test Method for Evaluating Emergency Response Robot Capabilities: Radio Communication: Line-of-Sight Range
    Edition: 2012
    $103.58
    Unlimited Users per year

Description of ASTM-E2854 2012

ASTM E2854-12

Historical Standard: Standard Test Method for Evaluating Emergency Response Robot Capabilities: Radio Communication: Line-of-Sight Range




ASTM E2854

Scope

1.1 Purpose:

1.1.1 The purpose of this test method, as a part of a suite of radio communication test methods, is to quantitatively evaluate a teleoperated robots (see Terminology E2521) capability to perform maneuvering and inspection tasks in a line-of-sight environment.

1.1.2 Robots shall possess a certain set of radio communication capabilities, including performing maneuvering and inspection tasks in a line-of-sight environment, to suit critical operations for emergency responses. The capability for a robot to perform these types of tasks in unobstructed areas down range is critical for emergency response operations. This test method specifies a standard set of apparatuses, procedures, and metrics to evaluate the robot/operator capabilities for performing these tasks.

1.1.3 Emergency response robots shall be able to operate remotely using the equipped radios in line-of-sight (LOS) environments, in non-line-of-sight (NLOS) environments, and for signal penetration through such impediments as buildings, rubbles, and tunnels. Additional capabilities include operating in the presence of electromagnetic interference and providing link security and data logging. Standard test methods are required to evaluate whether candidate robots meet these requirements.

1.1.4 ASTM E54.08.01 Task Group on Robotics specifies a radio communication test suite, which consists of a set of test methods for evaluating these communication capabilities. This line-of-sight range test method is a part of the radio communication test suite. The apparatuses associated with the test methods challenge specific robot capabilities in repeatable ways to facilitate comparison of different robot models as well as particular configurations of similar robot models.

1.1.5 This test method establishes procedures, apparatuses, and metrics for specifying and testing the capability of radio (wireless) links used between the operator station and the testing robot in a line-of-sight environment. These links include the command and control channel(s) and video, audio, and other sensor data telemetry.

1.1.6 This test method is intended to apply to ground based robotic systems and small unmanned aerial systems (sUAS) capable of hovering to perform maneuvering and inspection tasks down range for emergency response applications.

1.1.7 This test method specifies an apparatus that is an essentially clear radio frequency channel for testing. Fig. 1 provides an illustration.

Note 1—Frequency coordination and interoperability are not addressed in this standard. These issues should be resolved by the affected agencies (Fire, Police, and Urban Search and Rescue) and written into the Standard Operating Procedures (SOPs) that guide the responses to emergency situations.

1.1.8 The radio communication test suite quantifies elemental radio communication capabilities necessary for robots intended for emergency response applications. As such, based on their particular capability requirements, users of this test suite can select only the applicable test methods and can individually weight particular test methods or particular metrics within a test method. The testing results should collectively represent a ground robots overall radio communication capability. These test results can be used to guide procurement specifications and acceptance testing for robots intended for emergency response applications.

Note 2—As robotic systems are more widely applied, emergency responders might identify additional or advanced robotic radio communication capability requirements to help them respond to emergency situations. They might also desire to use robots with higher levels of autonomy, beyond teleoperation to help reduce their workloadsee NIST Special Publication 1011-II-1.0. Further, emergency responders in expanded emergency response domains might also desire to apply robotic technologies to their situations, a source for new sets of requirements. As a result, additional standards within the suite would be developed. This standard is, nevertheless, standalone and complete.

1.2 Performing LocationThis test method shall be performed in a testing laboratory or the field where the specified apparatus and environmental conditions are implemented.

1.3 UnitsThe values stated in SI units shall be the standard. The values given in parentheses are not precise mathematical conversions to inch-pound units. They are close approximate equivalents for the purpose of specifying material dimensions or quantities that are readily available to avoid excessive fabrication costs of test apparatuses while maintaining repeatability and reproducibility of the test method results. These values given in parentheses facilitate testing but are not considered standard.

1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.


Left: The line-of-sight range test method uses an airstrip or paved road with robot test stations placed every 100 m (330 ft) along the centerline. Right: Robot test stations are prototyped with targets on the barrels for visual inspection tasks and circular paths for maneuvering tasks.

FIG. 1 Test Fabrication at An Air Strip

Keywords

abstain; emergency responder; emergency response; OCU; operator control unit; radio communications; remote teleoperation; robot; test suite; urban search and rescue; US&R


ICS Code

ICS Number Code 25.040.30 (Industrial robots. Manipulators)


DOI: 10.1520/E2854-12

This book also exists in the following packages...

Year Publisher Title Annual Price
VAR
ASTM
[+] $567.22 Buy
VAR
ASTM
[+] $7,461.55 Buy

Subscription Information

MADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

Some features of MADCAD.com ASTM Standards Subscriptions are:

- Online access: With MADCAD.com’ s web based subscription service no downloads or installations are required. Access ASTM Standards from any browser on your computer, tablet or smart phone.

- Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.

 

For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

About ASTM

ASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide.

X