Cart (0)
  • No items in cart.
Total
$0
There is a technical issue about last added item. You can click "Report to us" button to let us know and we resolve the issue and return back to you or you can continue without last item via click to continue button.
Search book title
Enter keywords for book title search
Search book content
Enter keywords for book content search
Filters:
FORMAT
BOOKS
PACKAGES
EDITION
to
PUBLISHER
(1)
(317)
(572)
(43)
(234)
(969)
(643)
(2114)
(64)
(92448)
(54)
(535)
(117)
(31)
(20)
(19)
(92811)
(3)
(17)
(1)
(351)
(300)
(6023)
(239)
(16)
(5)
(1621)
(16)
(18)
(28)
(4)
 
(6)
(7)
(115)
(3)
(57)
(5)
(5)
(1)
(1)
(2)
(23)
(26)
(27)
(13)
(61)
(24)
(22)
(7)
(8)
(20)
(1)
(3)
(50)
(6)
(31)
CONTENT TYPE
 Act
 Admin Code
 Announcements
 Bill
 Book
 CADD File
 CAN
 CEU
 Charter
 Checklist
 City Code
 Code
 Commentary
 Comprehensive Plan
 Conference Paper
 County Code
 Course
 DHS Documents
 Document
 Errata
 Executive Regulation
 Federal Guideline
 Firm Content
 Guideline
 Handbook
 Interpretation
 Journal
 Land Use and Development
 Law
 Legislative Rule
 Local Amendment
 Local Code
 Local Document
 Local Regulation
 Local Standards
 Manual
 Model Code
 Model Standard
 Notice
 Ordinance
 Other
 Paperback
 PASS
 Periodicals
 PIN
 Plan
 Policy
 Product
 Program
 Provisions
 Requirements
 Revisions
 Rules & Regulations
 Standards
 State Amendment
 State Code
 State Manual
 State Plan
 State Standards
 Statute
 Study Guide
 Supplement
 Technical Bulletin
 All
  • ASTM
    D7779-11 Standard Test Method for Determination of Fracture Toughness of Graphite at Ambient Temperature
    Edition: 2011
    $93.60
    Unlimited Users per year

Description of ASTM-D7779 2011

ASTM D7779 - 11

Standard Test Method for Determination of Fracture Toughness of Graphite at Ambient Temperature

Active Standard ASTM D7779 | Developed by Subcommittee: D02.F0

Book of Standards Volume: 05.05




ASTM D7779

Significance and Use

This test method may be used for guidance for material development to improve toughness, material comparison, quality assessment, and characterization.

The fracture toughness value provides information on the initiation of fracture in graphite containing a straight-through notch; the information on stress intensity factor beyond fracture toughness as a function of crack extension provides information on the crack propagation resistance once a fracture crack has been initiated to propagate through the test specimen.

1. Scope

1.1 This test method covers and provides a measure of the resistance of a graphite to crack extension at ambient temperature and atmosphere expressed in terms of stress-intensity factor, K , and strain energy release rate, G . These crack growth resistance properties are determined using beam test specimens with a straight-through sharp machined V-notch.

1.2 This test method determines the stress intensity factor, K , from applied force and gross specimen deflection measured away from the crack tip. The stress intensity factor calculated at the maximum applied load is denoted as fracture toughness, K Ic , and is known as the critical stress intensity factor. If the resolution of the deflection gauge is sensitive to fracture behavior in the test specimen and can provide a measure of the specimen compliance, strain energy release rate, G , can be determined as a function of crack extension.

1.3 This test method is applicable to a variety of grades of graphite which exhibit different types of resistance to crack growth, such as growth at constant stress intensity (strain energy release rate), or growth with increasing stress intensity (strain energy release rate), or growth with decreasing stress intensity (strain energy release rate). It is generally recognized that because of the inhomogeneous microstructure of graphite, the general behavior will exhibit a mixture of all three during the test. The crack resistance behavior exhibited in the test is usually referred to as an R-curve.

Note 1One difference between the procedure in this test method and test methods such as Test Method E399 , which measure fracture toughness, K Ic , by one set of specific operational procedures, is that Test Method E399 focuses on the start of crack extension from a fatigue precrack for metallic materials. This test method for graphite makes use of a machined notch with sharp cracking at the root of the notch because of the nature of graphite. Therefore, fracture toughness values determined with this method may not be interchanged with K Ic as defined in Test Method E399 .

1.4 This test method gives fracture toughness values, K Ic and critical strain energy release rate, G Ic for specific conditions of environment, deformation rate, and temperature. Fracture toughness values for a graphite grade can be functions of environment, deformation rate, and temperature.

1.5 This test method is divided into two major parts. The first major part is the main body of the standard, which provides general information on the test method, the applicability to materials comparison and qualification, and requirements and recommendations for fracture toughness testing. The second major part is composed of annexes, which provide information related to test apparatus and test specimen geometry.

Main Body Section
Scope 1
Referenced Documents 2
Terminology 3
Summary of Test Method 4
Significance and Use 5
Apparatus 6
Test Specimen 7
Procedure 8
Specimen Dryness 9
Calculation of Results 10
Report 11
Precision and Bias 12
Keywords 13
Annex Annex A1

1.6 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.

1.6.1 Measurement units expressed in these test methods are in accordance with .

1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.


Keywords

fracture toughness; graphite; notched beam; strain energy release rate; three-point bend;


ICS Code

ICS Number Code 59.100.20 (Carbon materials)


DOI: 10.1520/D7779-11

ASTM International is a member of CrossRef.

ASTM D7779

The following editions for this book are also available...

This book also exists in the following packages...

Year Publisher Title Annual Price
VAR
ASTM
[+] $1,169.71 Buy
VAR
ASTM
[+] $5,835.44 Buy

Subscription Information

MADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

Some features of MADCAD.com ASTM Standards Subscriptions are:

- Online access: With MADCAD.com’ s web based subscription service no downloads or installations are required. Access ASTM Standards from any browser on your computer, tablet or smart phone.

- Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.

 

For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

About ASTM

ASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide.

X