Cart (0)
  • No items in cart.
Total
$0
There is a technical issue about last added item. You can click "Report to us" button to let us know and we resolve the issue and return back to you or you can continue without last item via click to continue button.
Search book title
Enter keywords for book title search
Search book content
Enter keywords for book content search
Filters:
FORMAT
BOOKS
PACKAGES
EDITION
to
PUBLISHER
(1)
(317)
(572)
(43)
(234)
(969)
(643)
(2114)
(64)
(92448)
(54)
(535)
(117)
(31)
(20)
(19)
(92811)
(3)
(17)
(1)
(351)
(300)
(6023)
(239)
(16)
(5)
(1621)
(16)
(18)
(28)
(4)
 
(6)
(7)
(115)
(3)
(57)
(5)
(5)
(1)
(1)
(2)
(23)
(26)
(27)
(13)
(61)
(24)
(22)
(7)
(8)
(20)
(1)
(3)
(50)
(6)
(31)
CONTENT TYPE
 Act
 Admin Code
 Announcements
 Bill
 Book
 CADD File
 CAN
 CEU
 Charter
 Checklist
 City Code
 Code
 Commentary
 Comprehensive Plan
 Conference Paper
 County Code
 Course
 DHS Documents
 Document
 Errata
 Executive Regulation
 Federal Guideline
 Firm Content
 Guideline
 Handbook
 Interpretation
 Journal
 Land Use and Development
 Law
 Legislative Rule
 Local Amendment
 Local Code
 Local Document
 Local Regulation
 Local Standards
 Manual
 Model Code
 Model Standard
 Notice
 Ordinance
 Other
 Paperback
 PASS
 Periodicals
 PIN
 Plan
 Policy
 Product
 Program
 Provisions
 Requirements
 Revisions
 Rules & Regulations
 Standards
 State Amendment
 State Code
 State Manual
 State Plan
 State Standards
 Statute
 Study Guide
 Supplement
 Technical Bulletin
 All
  • ASTM
    D6700-01(2013) Standard Practice for Use of Scrap Tire-Derived Fuel
    Edition: 2013
    $93.60
    Unlimited Users per year

Description of ASTM-D6700 2013

ASTM D6700 - 01(2013)

Standard Practice for Use of Scrap Tire-Derived Fuel

Active Standard ASTM D6700 | Developed by Subcommittee: D34.03

Book of Standards Volume: 11.04




ASTM D6700

Significance and Use

4.1 When considering the specification of fuels for a boiler, issues to evaluate are the fuel's combustion characteristics, handling and feeding logistics, environmental concerns, and ash residue considerations. A thorough understanding of these issues is required to engineer the combustion unit for power and steam generation; however, TDF has demonstrated compatible characteristics allowing it to serve as a supplemental fuel in existing combustion units based on cumulative experience in many facilities originally designed for traditional fossil fuels, or wood wastes, or both. When used as a supplemental energy resource in existing units, TDF usage is generally limited to blend ratios in the 10-30 % range based on energy input. This limit is due to its high heat release rate and low moisture content, which differ significantly from other solid fuels, such as wood, refuse derived fuel, coal and petroleum coke.

4.2 New combustion units dedicated to the use of TDF (or whole tires) as the sole fuel source are rare. The generation and availability of scrap tires is ultimately determined by market conditions for new tires and the depletion rate of scrap tire inventories (stockpiles). Scrap tires account for approximately 1 % of the municipal solid waste stream. Based on a national scrap tire generation rate, there are roughly 2.5 to 3 million tons (annually available for all uses to include fuel, crumb rubber, engineering projects, and so forth). Some dedicated combustion units have been built, however, competition for the scrap tires as other existing sources begin to use TDF will determine the ultimate viability of these facilities. Although most regions can supply TDF demand as a supplemental fuel, a dedicated boiler in the range of 500,000 lb/h (227,000 kg/h) steaming capacity would require over 66?000 scrap tires/day to meet its fuel demand. Such demand may strain a region's ability to supply and put the fuel supply at risk. Some design projects have incorporated TDF as a supplemental fuel with wood, coal, coke, sludge, or some combination of multiple fuels where demand is consistent with supply availability.

4.3 It is important to understand what objectives may lead to TDF's choice as a supplemental fuel in existing power units. Several model objectives may be as follows:

4.3.1 To increase boiler efficiency in a co-fired boiler using wood, sludge, and coal;

4.3.2 To procure a competitively priced fuel;

4.3.3 To supplement limited supplies of an existing fuel;

4.3.4 To use a high quality fuel;

4.3.5 To achieve environmental benefits by using a fuel with a relatively low sulfur content in comparison to certain coals or petroleum coke, and;

4.3.6 To provide a public and social benefit that solves a regional solid waste problem.

4.4 Boilers generally are engineered around fuels that will be available through the amortized life of the power unit. Boiler design discussions here are limited as TDF standard size specifications have been developed to assure TDF's performance in existing systems. TDF is mined from the solid waste stream as a whole tire, then engineered via processing techniques to fit a new or existing combustion unit. A major modification or re-engineering of the combustion unit to accommodate TDF normally would make its use uneconomical as a supplemental fuel. TDF's use is economically dependent on the following two issues.

4.4.1 A combustion unit's existing ability to use the fuel without modification (other than minor operational changes in oxygen grate speed adjustments, and feed/material handling) and,

4.4.2 The ability of a supplier to economically collect, process and transport TDF to the combustion unit.

4.5 Once an economic decision has been made to develop TDF as a fuel source for a particular unit, issues of fuel specifications including size, proximate and ultimate analysis, combustion characteristics and environmental concerns must be evaluated properly to determine whether TDF is an appropriate supplemental fuel resource without major system modification.


FIG. 1 Relative Energy Comparison of Fuels (Scale in Btu/ton)

1. Scope

1.1 This practice covers and provides guidance for the material recovery of scrap tires for their fuel value. The conversion of a whole scrap tire into a chipped formed for use as a fuel produces a product called tire-derived fuel (TDF). This recovery practice has moved from a pioneering concept in the early 1980s to a proven and continuous use in the United States with industrial and utility applications.

1.2 Combustion units engineered to use solid fuels, such as coal or wood or both, are fairly numerous throughout the U.S. Many of these units are now using TDF even though they were not specifically designed to burn TDF. It is clear that TDF has combustion characteristics similar to other carbon-based solid fuels. Similarities led to pragmatic testing in existing combustion units. Successful testing led to subsequent acceptance of TDF as a supplemental fuel when blended with conventional fuels in existing combustion devices. Changes required to modify appropriate existing combustion units to accommodate TDF range from none to relatively minor. The issues of proper applications and specifications are critical to successful utilization of this alternative energy resource.

1.3 This practice explains TDF's use when blended and combusted under normal operating conditions with originally specified fuels. Whole tire combustion for energy recovery is not discussed herein since whole tire usage does not require tire processing to a defined fuel specification.

1.4 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.

1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.


2. Referenced Documents (purchase separately) The documents listed below are referenced within the subject standard but are not provided as part of the standard.

Other Standards

SW-8469056 Ion Chromatography

ASTM Standards

D2013 Practice for Preparing Coal Samples for Analysis

D2361 Test Method for Chlorine in Coal

D2795 Test Methods for Analysis of Coal and Coke Ash

D3172 Practice for Proximate Analysis of Coal and Coke

D3173 Test Method for Moisture in the Analysis Sample of Coal and Coke

D3174 Test Method for Ash in the Analysis Sample of Coal and Coke from Coal

D3175 Test Method for Volatile Matter in the Analysis Sample of Coal and Coke

D3176 Practice for Ultimate Analysis of Coal and Coke

D3177 Test Methods for Total Sulfur in the Analysis Sample of Coal and Coke

D3178 Test Methods for Carbon and Hydrogen in the Analysis Sample of Coal and Coke

D3179 Test Methods for Nitrogen in the Analysis Sample of Coal and Coke

D3682 Test Method for Major and Minor Elements in Combustion Residues from Coal Utilization Processes

D4239 Test Method for Sulfur in the Analysis Sample of Coal and Coke Using High-Temperature Tube Furnace Combustion

D4326 Test Method for Major and Minor Elements in Coal and Coke Ash By X-Ray Fluorescence

D4749 Test Method for Performing the Sieve Analysis of Coal and Designating Coal Size

D5468 Test Method for Gross Calorific and Ash Value of Waste Materials

D5865 Test Method for Gross Calorific Value of Coal and Coke

E873 Test Method for Bulk Density of Densified Particulate Biomass Fuels


Keywords

ash; Btu content; chip size; combustion; conveying; minus; moisture; passenger tire equivalent (PTE); quality control; sulfur; tire-derived fuel (TDF); wire; zinc;


ICS Code

ICS Number Code 83.160.01 (Tyres in general)


DOI: 10.1520/D6700-01R13

ASTM International is a member of CrossRef.

ASTM D6700

This book also exists in the following packages...

Year Publisher Title Annual Price
VAR
ASTM
[+] $716.33 Buy
VAR
ASTM
[+] $5,933.17 Buy

Subscription Information

MADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

Some features of MADCAD.com ASTM Standards Subscriptions are:

- Online access: With MADCAD.com’ s web based subscription service no downloads or installations are required. Access ASTM Standards from any browser on your computer, tablet or smart phone.

- Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.

 

For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

About ASTM

ASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide.

X