Search book title
Enter keywords for book title search
Search book content
Enter keywords for book content search
  • ASTM
    D6432-99 Standard Guide for Using the Surface Ground Penetrating Radar Method for Subsurface Investigation
    Edition: 1999
    Unlimited Users - 1 Loc per year

Description of ASTM-D6432 1999

ASTM D6432-99

Historical Standard: ASTM D6432-99 Standard Guide for Using the Surface Ground Penetrating Radar Method for Subsurface Investigation

SUPERSEDED (see Active link, below)

Buy Standard (PDF)
17 pages

Active (view current version of standard)

ASTM D6432

1. Scope

1.1 Purpose and Application:
1.1.1 This guide summarizes the equipment, field procedures, and interpretation methods for the assessment of sub surface materials using the impulse Ground Penetrating Radar (GPR) Method. GPR is most often employed as a technique that uses high-frequency electromagnetic (EM) waves (from 10 to 3000 MHz) to acquire subsurface information. GPR detects changes in EM properties (dielectric permittivity, conductivity, and magnetic permeability), that in a geologic setting, are a function of soil and rock material, water content, and bulk density. Data are normally acquired using antennas placed on the ground surface or in boreholes. The transmitting antenna radiates EM waves that propagate in the subsurface and reflect from boundaries at which there are EM property contrasts. The receiving GPR antenna records the reflected waves over a selectable time range. The depths to the reflecting interfaces are calculated from the arrival times in the GPR data if the EM propagation velocity in the subsurface can be estimated or measured.
1.1.2 GPR measurements as described in this guide are used in geologic, engineering, hydrologic, and environmental applications. The GPR method is used to map geologic conditions that include depth to bedrock, depth to the water table (Wright et al (1)2 ), depth and thickness of soil strata on land and under fresh water bodies (Beres and Haeni (2)), and the location of subsurface cavities and fractures in bedrock (Ulriksen (3) and Imse and Levine (4)). Other applications include the location of objects such as pipes, drums, tanks, cables, and boulders , mapping landfill and trench boundaries (Benson et al (6)), mapping contaminants (Cosgrave et al (7); Brewster and Annan (8); Daniels et al (9)), conducting archaeological (Vaughan (10)) and forensic investigations (Davenport et al (11)), inspection of brick, masonry, and concrete structures, roads and railroad trackbed studies (Ulriksen (3)), and highway bridge scour studies (Placzek and Haeni (12)). Additional applications and case studies can be found in the various Proceedings of the International Conferences on Ground Penetrating Radar (Lucius et al (13); Hannien and Autio, (14), Redman, (15); Sato, (16); Plumb (17)), various Proceedings of the Symposium on the Application of Geophysics to Engineering and Environmental Problems (Environmental and Engineering Geophysical Society, 1988-1998), and The Ground Penetrating Radar Workshop (Pilon (18)), EPA (19), and Daniels (20) provide overviews of the GPR method.

1.2 Limitations:
1.2.1 This guide provides an overview of the impulse GPR method. It does not address details of the theory, field procedures, or interpretation of the data. References are included for that purpose and are considered an essential part of this guide. It is recommended that the user of the GPR method be familiar with the relevant material within this guide and the references cited in the text and with Guides D 420, D 5730, D 5753, D 6429, and D 6235.
1.2.2 This guide is limited to the commonly used approach to GPR measurements from the ground surface. The method can be adapted for a number of special uses on ice (Haeni et al (21); Wright et al (22)), within or between boreholes (Lane et al (23); Lane et al (24)), on water (Haeni (25)), and airborne (Arcone et al (25)) applications. A discussion of these other adaptations of GPR measurements is not included in this guide.
1.2.3 The approaches suggested in this guide for using GPR are the most commonly used, widely accepted, and proven; however, other approaches or modifications to using GPR that are technically sound may be substituted if technically justified and documented.
1.2.4 This guide offers an organized collection of information or a series of options and does not recommend a specific course of action. This document cannot replace education or experience and should be used in conjunction with professional judgements. Not all aspects of this guide may be applicable in all circumstances. This ASTM standard is not intended to represent or replace the standard of care by which the adequacy of a given professional service must be judged, nor should this document be applied without consideration of a projects many unique aspects. The word 'Standard' in the title of this document means only that the document has been approved through the ASTM consensus process.

1.3 Precautions:
1.3.1 It is the responsibility of the user of this guide to follow any precautions in the equipment manufacturer's recommendations and to establish appropriate health and safety practices.
1.3.2 If this guide is used at sites with hazardous materials, operations, or equipment, it is the responsibility of the user of this guide to establish appropriate safety and health practices and determine the applicability of any regulations prior to use.
1.3.3 This guide does not purport to address all of the safety concerns that may be associated with the use of the GPR method. It is the responsibility of the user of this guide to establish appropriate safety and health practices and to determine the applicability of regulations prior to use.

2. Referenced Documents (purchase separately) The documents listed below are referenced within the subject standard but are not provided as part of the standard.

ASTM Standards

D420 Guide to Site Characterization for Engineering Design and Construction Purposes

D653 Terminology Relating to Soil, Rock, and Contained Fluids

D3740 Practice for Minimum Requirements for Agencies Engaged in Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction

D5730 Guide for Site Characterization for Environmental Purposes With Emphasis on Soil, Rock, the Vadose Zone and Ground Water

D5753 Guide for Planning and Conducting Borehole Geophysical Logging

D6235 Practice for Expedited Site Characterization of Vadose Zone and Groundwater Contamination at Hazardous Waste Contaminated Sites

D6429 Guide for Selecting Surface Geophysical Methods


Civil engineering; Engineering criteria/design--soil/rock/related materials; Environmental site assessment (ESA)--soil/rock; Geological investigations; Ground-penetrating radar; Ground water; Radar; Subsurface investigation--soil/rock; Surface analysis--soil/rock/related materials; Surface ground penetrating radar method

ICS Code

ICS Number Code 07.060 (Geology. Meteorology. Hydrology)

DOI: 10.1520/D6432-99

ASTM International is a member of CrossRef.

The following editions for this book are also available...

This book also exists in the following packages...

Year Publisher Title Annual Price
[+] $5,658.00 Buy
[+] $642.00 Buy
[+] $7,430.00 Buy
[+] $854.00 Buy
[+] $5,049.00 Buy
[+] $3,800.00 Buy

Subscription Information ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at or +1 800.798.9296.


Some features of ASTM Standards Subscriptions are:

- Online access: With’ s web based subscription service no downloads or installations are required. Access ASTM Standards from any browser on your computer, tablet or smart phone.

- Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.


For any further information on ASTM Standards Subscriptions, please contact us at or +1 800.798.9296.


About ASTM

ASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide.