Cart (0)
  • No items in cart.
Total
$0
There is a technical issue about last added item. You can click "Report to us" button to let us know and we resolve the issue and return back to you or you can continue without last item via click to continue button.
Search book title
Enter keywords for book title search
Search book content
Enter keywords for book content search
Filters:
FORMAT
BOOKS
PACKAGES
EDITION
to
PUBLISHER
(1)
(317)
(572)
(43)
(234)
(969)
(643)
(1945)
(64)
(91921)
(54)
(535)
(117)
(31)
(20)
(19)
(92811)
(3)
(17)
(1)
(351)
(300)
(6023)
(239)
(16)
(5)
(1621)
(16)
(18)
(28)
(4)
 
(6)
(7)
(115)
(3)
(57)
(5)
(5)
(1)
(1)
(2)
(23)
(26)
(27)
(13)
(61)
(24)
(22)
(7)
(8)
(20)
(1)
(3)
(50)
(6)
(31)
CONTENT TYPE
 Act
 Admin Code
 Announcements
 Bill
 Book
 CADD File
 CAN
 CEU
 Charter
 Checklist
 City Code
 Code
 Commentary
 Comprehensive Plan
 Conference Paper
 County Code
 Course
 DHS Documents
 Document
 Errata
 Executive Regulation
 Federal Guideline
 Firm Content
 Guideline
 Handbook
 Interpretation
 Journal
 Land Use and Development
 Law
 Legislative Rule
 Local Amendment
 Local Code
 Local Document
 Local Regulation
 Local Standards
 Manual
 Model Code
 Model Standard
 Notice
 Ordinance
 Other
 Paperback
 PASS
 Periodicals
 PIN
 Plan
 Policy
 Product
 Program
 Provisions
 Requirements
 Revisions
 Rules & Regulations
 Standards
 State Amendment
 State Code
 State Manual
 State Plan
 State Standards
 Statute
 Study Guide
 Supplement
 Technical Bulletin
 All
  • ASTM
    D5783-95(2012) Standard Guide for Use of Direct Rotary Drilling with Water-Based Drilling Fluid for Geoenvironmental Exploration and the Installation of Subsurface Water-Quality Monitoring Devices
    Edition: 2012
    $93.60
    Unlimited Users per year

Description of ASTM-D5783 2012

ASTM D5783 - 95(2012)

Standard Guide for Use of Direct Rotary Drilling with Water-Based Drilling Fluid for Geoenvironmental Exploration and the Installation of Subsurface Water-Quality Monitoring Devices

Active Standard ASTM D5783 | Developed by Subcommittee: D18.21

Book of Standards Volume: 04.08




ASTM D5783

Significance and Use

4.1 Direct-rotary drilling may be used in support of geoenvironmental exploration and for installation of subsurface water-quality monitoring devices in unconsolidated and consolidated materials. Direct-rotary drilling may be selected over other methods based on advantages over other methods. In drilling unconsolidated sediments and hard rock, other than cavernous limestones and basalts where circulation cannot be maintained, the direct-rotary method is a faster drilling method than the cable-tool method. The cutting samples from direct-rotary drilled holes are usually as representative as those obtained from cable-tool drilled holes however, direct-rotary drilled holes usually require more well-development effort. If however, drilling of water-sensitive materials (that is, friable sandstones or collapsible soils) is anticipated, it may preclude use of water-based rotary-drilling methods and other drilling methods should be considered.

4.1.1 The application of direct-rotary drilling to geoenvironmental exploration may involve sampling, coring, in-situ or pore-fluid testing, or installation of casing for subsequent drilling activities in unconsolidated or consolidated materials. Several advantages of using the direct-rotary drilling method are stability of the borehole wall in drilling unconsolidated formations due to the buildup of a filter cake on the wall. The method can also be used in drilling consolidated formations. Disadvantages to using the direct-rotary drilling method include the introduction of fluids to the subsurface, and creation of the filter cake on the wall of the borehole that may alter the natural hydraulic characteristics of the borehole.

Note 3 The user may install a monitoring device within the same borehole wherein sampling, in-situ or pore-fluid testing, or coring was performed.

4.2 The subsurface water-quality monitoring devices that are addressed in this guide consist generally of a screened or porous intake and riser pipe(s) that are usually installed with a filter pack to enhance the longevity of the intake unit, and with isolation seals and low-permeability backfill to deter the movement of fluids or infiltration of surface water between hydrologic units penetrated by the borehole (see Practice D5092 ). Inasmuch as a piezometer is primarily a device used for measuring subsurface hydraulic heads, the conversion of a piezometer to a water-quality monitoring device should be made only after consideration of the overall quality of the installation, including the quality of materials that will contact sampled water or gas.

Note 4 Both water-quality monitoring devices and piezometers should have adequate casing seals, annular isolation seals and backfills to deter movement of contaminants between hydrologic units.

1. Scope

1.1 This guide covers how direct (straight) rotary-drilling procedures with water-based drilling fluids may be used for geoenvironmental exploration and installation of subsurface water-quality monitoring devices.

Note 1 The term direct with respect to the rotary-drilling method of this guide indicates that a water-based drilling fluid is pumped through a drill-rod column to a rotating bit. The drilling fluid transports cuttings to the surface through the annulus between the drill-rod column and the borehole wall.
Note 2 This guide does not include considerations for geotechnical site characterization that are addressed in a separate guide.

1.2 Direct-rotary drilling for geoenvironmental exploration and monitoring-device installations will often involve safety planning, administration and documentation. This standard does not purport to specifically address exploration and site safety.

1.3 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.

1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

1.5 This guide offers an organized collection of information or a series of options and does not recommend a specific course of action. This document cannot replace education or experience and should be used in conjunction with professional judgment. Not all aspects of this guide may be applicable in all circumstances. This ASTM standard is not intended to represent or replace the standard of care by which the adequacy of a given professional service must be judged, nor should this document be applied without consideration of a project's many unique aspects. The word Standard in the title of this document means only that the document has been approved through the ASTM consensus process.


2. Referenced Documents (purchase separately) The documents listed below are referenced within the subject standard but are not provided as part of the standard.

ASTM Standards

D653 Terminology Relating to Soil, Rock, and Contained Fluids

D1452 Practice for Soil Exploration and Sampling by Auger Borings

D1586 Test Method for Penetration Test (SPT) and Split-Barrel Sampling of Soils

D1587 Practice for Thin-Walled Tube Sampling of Soils for Geotechnical Purposes

D2113 Practice for Rock Core Drilling and Sampling of Rock for Site Investigation

D3550 Practice for Thick Wall, Ring-Lined, Split Barrel, Drive Sampling of Soils

D5088 Practice for Decontamination of Field Equipment Used at Waste Sites

D5092 Practice for Design and Installation of Ground Water Monitoring Wells

D5099 Test Methods for Rubber--Measurement of Processing Properties Using Capillary Rheometry

D5434 Guide for Field Logging of Subsurface Explorations of Soil and Rock

D5784 Guide for Use of Hollow-Stem Augers for Geoenvironmental Exploration and the Installation of Subsurface Water-Quality Monitoring Devices


Keywords

direct-rotary drilling method; drilling; geoenvironmental exploration; groundwater; vadose zone;


ICS Code

ICS Number Code 73.100.30 (Equipment for drilling and mine excavation)


DOI: 10.1520/D5783-95R12

ASTM International is a member of CrossRef.

ASTM D5783

This book also exists in the following packages...

Year Publisher Title Annual Price
VAR
ASTM
[+] $1,373.22 Buy
VAR
ASTM
[+] $10,801.41 Buy
VAR
ASTM
[+] $5,812.65 Buy

Subscription Information

MADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

Some features of MADCAD.com ASTM Standards Subscriptions are:

- Online access: With MADCAD.com’ s web based subscription service no downloads or installations are required. Access ASTM Standards from any browser on your computer, tablet or smart phone.

- Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.

 

For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

About ASTM

ASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide.

X