Cart (0)
  • No items in cart.
Subtotal
$0
There is a technical issue about last added item. You can click "Report to us" button to let us know and we resolve the issue and return back to you or you can continue without last item via click to continue button.
Search book title
Enter keywords for book title search
Search book content
Enter keywords for book content search
Filters:
FORMAT
BOOKS
PACKAGES
EDITION
to
PUBLISHER
(1)
(316)
(569)
(43)
(234)
(969)
(643)
(1935)
(64)
(91921)
(54)
(535)
(117)
(28)
(20)
(19)
(92193)
(3)
(17)
(1)
(351)
(298)
(6023)
(239)
(16)
(5)
(1619)
(16)
(18)
(28)
(4)
 
(6)
(7)
(115)
(3)
(57)
(5)
(5)
(1)
(1)
(2)
(23)
(26)
(27)
(13)
(61)
(24)
(22)
(7)
(8)
(20)
(1)
(3)
(50)
(6)
(31)
CONTENT TYPE
 Act
 Admin Code
 Announcements
 Bill
 Book
 CADD File
 CAN
 CEU
 Charter
 Checklist
 City Code
 Code
 Commentary
 Comprehensive Plan
 Conference Paper
 County Code
 Course
 DHS Documents
 Document
 Errata
 Executive Regulation
 Federal Guideline
 Firm Content
 Guideline
 Handbook
 Interpretation
 Journal
 Land Use and Development
 Law
 Legislative Rule
 Local Amendment
 Local Code
 Local Document
 Local Regulation
 Local Standards
 Manual
 Model Code
 Model Standard
 Notice
 Ordinance
 Other
 Paperback
 PASS
 Periodicals
 PIN
 Plan
 Policy
 Product
 Program
 Provisions
 Requirements
 Revisions
 Rules & Regulations
 Standards
 State Amendment
 State Code
 State Manual
 State Plan
 State Standards
 Statute
 Study Guide
 Supplement
 Technical Bulletin
 All
  • ASTM
    D5030-04 Standard Test Method for Density of Soil and Rock in Place by the Water Replacement Method in a Test Pit
    Edition: 2004
    $103.58
    Unlimited Users per year

Description of ASTM-D5030 2004

ASTM D5030-04

Historical Standard: ASTM D5030-04 Standard Test Method for Density of Soil and Rock in Place by the Water Replacement Method in a Test Pit

SUPERSEDED (see Active link, below)




1. Scope

1.1 This test method covers the determination of the in-place density and unit weight of soil and rock using water to fill a lined test pit to determine the volume of the test pit. The use of the word 'rock' in this test method is used to imply that the material being tested will typically contain particles larger than 3 in. (75 mm).

1.2 This test method is best suited for test pits with a volume between approximately 3 and 100 ft 3 (0.08 and 2.83 m 3 ). In general, the materials tested would have maximum particle sizes over 5 in. (125 mm). This test method may be used for larger sized excavations if desirable.

1.2.1 This procedure is usually performed using circular metal templates with inside diameters of 3 ft (0.9 m) or more. Other shapes or materials may be used providing they meet the requirements of this test method and the guidelines given in for the minimum volume of the test pit.

1.2.2 Test Method D 4914 may be used as an alternative method. Its use, however, is usually only practical for volume determination of test pits between approximately 1 and 6 ft 3 (0.03 and 0.17 m 3 ).

1.2.3 Test Method D 1556 or Test Method D 2167 is usually used to determine the volume of test holes smaller than 1 ft 3 (0.03 m 3 ).

1.3 The two procedures are described as follows:

1.3.1 Procedure AIn-Place Density and Unit Weight of Total Material (Section ).

1.3.2 Procedure BIn-Place Density and Unit Weight of Control Fraction (Section 10).

1.4 Selection of Procedure

1.4.1 Procedure A is used when the in-place unit weight of total material is to be determined. Procedure A can also be used to determine percent compaction or percent relative density when the maximum particle size present in the in-place material being tested does not exceed the maximum particle size allowed in the laboratory compaction test (Test Methods D 698, D 1557, D 4253, D 4254, D 4564). For Test Methods D 698 and D 1557 only, the unit weight determined in the laboratory compaction test may be corrected for larger particle sizes in accordance with, and subject to the limitations of, Practice D 4718.

1.4.2 Procedure B is used when percent compaction or percent relative density is to be determined and the in-place material contains particles larger than the maximum particle size allowed in the laboratory compaction test or when Practice D 4718 is not applicable for the laboratory compaction test. Then the material is considered to consist of two fractions, or portions. The material from the in-place unit weight test is physically divided into a control fraction and an oversize fraction based on a designated sieve size. The unit weight of the control fraction is calculated and compared with the unit weight(s) established by the laboratory compaction test(s).

Because of possible lower densities created when there is particle interference (see Practice D 4718), the percent compaction of the control fraction should not be assumed to represent the percent compaction of the total material in the field.

1.4.3 Normally, the control fraction is the minus No. 4 sieve size material for cohesive or nonfree-draining materials and the minus 3-in. sieve size material for cohesionless, free-draining materials. While other sizes are used for the control fraction (3/ 8, 3/4-in.), this test method has been prepared using only the No. 4 and the 3-in. sieve sizes for clarity.

1.5 Any material can be tested, provided the material being tested has sufficient cohesion or particle attraction to maintain stable sides during excavation of the test pit and through completion of this test. It should also be firm enough not to deform or slough due to the minor pressures exerted in digging the hole and filling with water.

1.5.1 A very careful assessment must be made as to whether or not the volume determined is representative of the in-place condition when this test method is used for clean, relatively uniform-sized particles 3 in. (75 mm) and larger. The disturbance during excavation, due to lack of cohesion, and the void spaces between particles spanned by the liner may affect the measurement of the volume of the test pit.

1.6 This test method is generally limited to material in an unsaturated condition and is not recommended for materials that are soft or friable (crumble easily) or in a moisture condition such that water seeps into the excavated hole. The accuracy of the test may be affected for materials that deform easily or that may undergo volume change in the excavated hole from standing or walking near the hole during the test.

1.7 The values stated in inch-pound units are to be regarded as the standard. The values given in parentheses are for information only.

1.7.1 In the engineering profession, it is customary practice to use, interchangeably, units representing both mass and force, unless dynamic calculations (F = Ma) are involved. This implicitly combines two separate systems of units, that is, the absolute system and the gravimetric system. It is scientifically undesirable to combine the use of two separate systems within a single standard. This test method has been written using inch-pound units (gravimetric system) where the pound (lbf) represents a unit of force (weight); however, conversions are given in the SI system. The use of balances or scales recording pounds of mass (lbm), or the recording of density in lbm/ft 3 should not be regarded as nonconformance with this standard.

This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For a specific hazard statement, see Section 7.


2. Referenced Documents (purchase separately) The documents listed below are referenced within the subject standard but are not provided as part of the standard.

ASTM Standards

C127 Test Method for Density, Relative Density (Specific Gravity), and Absorption of Coarse Aggregate

C138/C138M Test Method for Density (Unit Weight), Yield, and Air Content (Gravimetric) of Concrete

C566 Test Method for Total Evaporable Moisture Content of Aggregate by Drying

D653 Terminology Relating to Soil, Rock, and Contained Fluids

D698 Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12 400 ft-lbf/ft3 (600 kN-m/m3))

D1556 Test Method for Density and Unit Weight of Soil in Place by Sand-Cone Method

D1557 Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/ft3 (2,700 kN-m/m3))

D2167 Test Method for Density and Unit Weight of Soil in Place by the Rubber Balloon Method

D2216 Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass

D4253 Test Methods for Maximum Index Density and Unit Weight of Soils Using a Vibratory Table

D4254 Test Methods for Minimum Index Density and Unit Weight of Soils and Calculation of Relative Density

D4564 Test Method for Density and Unit Weight of Soil in Place by the Sleeve Method

D4718 Practice for Correction of Unit Weight and Water Content for Soils Containing Oversize Particles

D4753 Guide for Evaluating, Selecting, and Specifying Balances and Standard Masses for Use in Soil, Rock, and Construction Materials Testing

D4914 Test Methods for Density and Unit Weight of Soil and Rock in Place by the Sand Replacement Method in a Test Pit

E1 Specification for ASTM Liquid-in-Glass Thermometers

E11 Specification for Woven Wire Test Sieve Cloth and Test Sieves


Keywords

acceptance test; degree of compaction; density tests; field test; In-place density; pit test; quality control; test pit density; unit weight; water pit; water replacement method;


ICS Code

ICS Number Code 93.020 (Earth works. Excavations. Foundation construction. Underground works)


DOI: 10.1520/D5030-04

ASTM International is a member of CrossRef.


The following editions for this book are also available...

This book also exists in the following packages...

Year Publisher Title Annual Price
VAR
ASTM
[+] $1,373.22 Buy
VAR
ASTM
[+] $10,801.41 Buy

Subscription Information

MADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

Some features of MADCAD.com ASTM Standards Subscriptions are:

- Online access: With MADCAD.com’ s web based subscription service no downloads or installations are required. Access ASTM Standards from any browser on your computer, tablet or smart phone.

- Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.

 

For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

About ASTM

ASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide.

X