Cart (0)
  • No items in cart.
Subtotal
$0
There is a technical issue about last added item. You can click "Report to us" button to let us know and we resolve the issue and return back to you or you can continue without last item via click to continue button.
Search book title
Enter keywords for book title search
Search book content
Enter keywords for book content search
Filters:
FORMAT
BOOKS
PACKAGES
EDITION
to
PUBLISHER
(1)
(316)
(569)
(43)
(234)
(969)
(643)
(1935)
(64)
(91921)
(54)
(535)
(117)
(28)
(20)
(19)
(92193)
(3)
(17)
(1)
(351)
(298)
(6023)
(239)
(16)
(5)
(1619)
(16)
(18)
(28)
(4)
 
(6)
(7)
(115)
(3)
(57)
(5)
(5)
(1)
(1)
(2)
(23)
(26)
(27)
(13)
(61)
(24)
(22)
(7)
(8)
(20)
(1)
(3)
(50)
(6)
(31)
CONTENT TYPE
 Act
 Admin Code
 Announcements
 Bill
 Book
 CADD File
 CAN
 CEU
 Charter
 Checklist
 City Code
 Code
 Commentary
 Comprehensive Plan
 Conference Paper
 County Code
 Course
 DHS Documents
 Document
 Errata
 Executive Regulation
 Federal Guideline
 Firm Content
 Guideline
 Handbook
 Interpretation
 Journal
 Land Use and Development
 Law
 Legislative Rule
 Local Amendment
 Local Code
 Local Document
 Local Regulation
 Local Standards
 Manual
 Model Code
 Model Standard
 Notice
 Ordinance
 Other
 Paperback
 PASS
 Periodicals
 PIN
 Plan
 Policy
 Product
 Program
 Provisions
 Requirements
 Revisions
 Rules & Regulations
 Standards
 State Amendment
 State Code
 State Manual
 State Plan
 State Standards
 Statute
 Study Guide
 Supplement
 Technical Bulletin
 All
  • ASTM
    D4914/D4914M-16 Standard Test Methods for Density of Soil and Rock in Place by the Sand Replacement Method in a Test Pit (Redline)
    Edition: 2016
    $103.58
    Unlimited Users per year

Description of ASTM-D4914/D4914M 2016

ASTM D4914/D4914M-16

Redline Standard: Standard Test Methods for Density of Soil and Rock in Place by the Sand Replacement Method in a Test Pit




ASTM D4914/D4914M

Scope

1.1 These test methods cover the determination of the in-place density of soil and rock using a pouring device and calibrated sand to determine the volume of a test pit. The word “rock” in these test methods is used to imply that the material being tested will typically contain particles larger than 3 in. [75 mm].

1.2 These test methods are best suited for test pits with a volume from 0.03 to 0.17 m3 [1 to 6 ft3]. In general, the materials tested would have a maximum particle size of 75 to 125 mm [3 to 5 in.].

1.2.1 For larger sized excavations and soil containing larger particles, Test Method D5030 is preferred.

1.2.2 Test Method D1556 or D2167 are usually used to determine the volume of test holes smaller than 0.03 m3 [1 ft3]. While the equipment illustrated in these test methods is used for volumes less than 0.03 m3 [1 ft3], the test methods allow larger versions of the equipment to be used when necessary.

1.3 Two test methods are provided as follows:

1.3.1 Test Method A—In-Place Density of Total Material (Section 10).

1.3.2 Test Method B—In-Place Density of Control Fraction (Section 11).

1.4 Selection of Test Methods: 

1.4.1 Test Method A is used when the in-place density of total material is to be determined. Test Method A can also be used to determine percent compaction or percent relative density when the maximum particle size present in the in-place material being tested does not exceed the maximum particle size allowed in the laboratory compaction test (refer to Test Methods D698, D1557, D4253, D4254, and D7382). For Test Methods D698 and D1557 only, the dry density determined in the laboratory compaction test may be corrected for larger particle sizes in accordance with, and subject to the limitations of Practice D4718.

1.4.2 Test Method B is used when percent compaction or percent relative density is to be determined and the in-place material contains particles larger than the maximum particle size allowed in the laboratory compaction test or when Practice D4718 is not applicable for the laboratory compaction test. Then the material is considered to consist of two fractions, or portions. The material from the in-place dry density test is physically divided into a control fraction and an oversize fraction based on a designated sieve size (see Section 3). The dry density of the control fraction is calculated and compared with the dry density(s) established by the laboratory compaction test(s).

1.5 Any materials that can be excavated with hand tools can be tested provided that the void or pore openings in the mass are small enough (or a liner is used) to prevent the calibrated sand used in the test from entering the natural voids. The material being tested should have sufficient cohesion or particle interlocking to maintain stable sides during excavation of the test pit and through completion of this test. It should also be firm enough not to deform or slough due to the minor pressures exerted in digging the hole and pouring the sand.

1.6 These test methods are generally limited to material in an unsaturated condition and are not recommended for materials that are soft or friable (crumble easily) or in a water condition such that water seeps into the hand-excavated hole. The accuracy of the test methods may be affected for materials that deform easily or that may undergo volume change in the excavated hole from standing or walking near the hole during the test.

1.7 The values stated in either SI units or inch-pound presented in brackets are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.

1.8 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026.

1.8.1 The procedures used to specify how data are collected, recorded or calculated in this standard are regarded as the industry standard. In addition they are representative of the significant digits that generally should be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user’s objectives; it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of this standard to consider significant digits used in analytical methods for engineering design.

1.9 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific hazards statements, see Sections 8 and A1.5.


Keywords

acceptance test; degree of compaction; density tests; field test; in-place density; pit test; quality control; sand replacement method;


ICS Code

ICS Number Code 93.020 (Earth works. Excavations. Foundation construction. Underground works)


DOI: 10.1520/D4914_D4914M-16

This book also exists in the following packages...

Year Publisher Title Annual Price
VAR
ASTM
[+] $1,373.22 Buy
VAR
ASTM
[+] $10,801.41 Buy
VAR
ASTM
[+] $5,812.65 Buy

Subscription Information

MADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

Some features of MADCAD.com ASTM Standards Subscriptions are:

- Online access: With MADCAD.com’ s web based subscription service no downloads or installations are required. Access ASTM Standards from any browser on your computer, tablet or smart phone.

- Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.

 

For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

About ASTM

ASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide.

X