Cart (0)
  • No items in cart.
Subtotal
$0
There is a technical issue about last added item. You can click "Report to us" button to let us know and we resolve the issue and return back to you or you can continue without last item via click to continue button.
Search book title
Enter keywords for book title search
Search book content
Enter keywords for book content search
Filters:
FORMAT
BOOKS
PACKAGES
EDITION
to
PUBLISHER
(1)
(316)
(569)
(43)
(234)
(969)
(643)
(1935)
(64)
(91921)
(54)
(535)
(117)
(28)
(20)
(19)
(92193)
(3)
(17)
(1)
(351)
(298)
(6023)
(239)
(16)
(5)
(1619)
(16)
(18)
(28)
(4)
 
(6)
(7)
(115)
(3)
(57)
(5)
(5)
(1)
(1)
(2)
(23)
(26)
(27)
(13)
(61)
(24)
(22)
(7)
(8)
(20)
(1)
(3)
(50)
(6)
(31)
CONTENT TYPE
 Act
 Admin Code
 Announcements
 Bill
 Book
 CADD File
 CAN
 CEU
 Charter
 Checklist
 City Code
 Code
 Commentary
 Comprehensive Plan
 Conference Paper
 County Code
 Course
 DHS Documents
 Document
 Errata
 Executive Regulation
 Federal Guideline
 Firm Content
 Guideline
 Handbook
 Interpretation
 Journal
 Land Use and Development
 Law
 Legislative Rule
 Local Amendment
 Local Code
 Local Document
 Local Regulation
 Local Standards
 Manual
 Model Code
 Model Standard
 Notice
 Ordinance
 Other
 Paperback
 PASS
 Periodicals
 PIN
 Plan
 Policy
 Product
 Program
 Provisions
 Requirements
 Revisions
 Rules & Regulations
 Standards
 State Amendment
 State Code
 State Manual
 State Plan
 State Standards
 Statute
 Study Guide
 Supplement
 Technical Bulletin
 All
  • ASTM
    D4543-08 Standard Practices for Preparing Rock Core as Cylindrical Test Specimens and Verifying Conformance to Dimensional and Shape Tolerances (Redline)
    Edition: 2008
    $67.39
    Unlimited Users per year

Description of ASTM-D4543 2008

ASTM D4543 - 08

Standard Practices for Preparing Rock Core as Cylindrical Test Specimens and Verifying Conformance to Dimensional and Shape Tolerances

Active Standard ASTM D4543 | Developed by Subcommittee: D18.12

Book of Standards Volume: 04.08




ASTM D4543

Significance and Use

p>The dimensional, shape, and surface tolerances of rock core specimens are important for determining rock properties of intact specimens. This is especially true for strong rocks, greater than 7250 psi (50 MPa). Dimensional and surface tolerance checks are required in the test methods listed in Section 2.1. To simplify test procedures in laboratories, the parts of those procedures that are common to the test methods in Section 2.1 are given in this standard.

This procedure is applicable to all the standards listed in Section 2.1. However, specimens for Test Method D 2936 do not need to be machined or to meet the specified tolerances for flatness and parallelism.

The moisture condition of the specimen at the time of the sample preparation can have a significant effect upon the strength and deformation characteristics of the rock. Good practice generally dictates that laboratory tests be made upon specimens representative of field conditions. Thus, it follows that the field moisture condition of the specimen should be preserved until the time of the test. In some instances, however, there may be reasons for testing specimens at other moisture contents, from saturation to dry. In any case, the moisture content of the test specimen should be tailored to the problem at hand. Excess moisture will affect the adhesion of resistance strain gages, if used, and the accuracy of their performance. Adhesives used to bond the rock to steel end pieces in the direct tension test will also be affected adversely by excess moisture.

Note 2The quality of the result produced by these practices is dependent upon the competence of the personnel performing it and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D 3740 are generally considered capable of competent and objective testing and sampling. Users of these practices are cautioned that compliance with Practice D 3740 does not in itself assure reliable results. Reliable results depend on many factors; Practice D 3740 provides a means of evaluating some of those factors.

1. Scope

1.1 These practices specify procedures for laboratory rock core test specimen preparation of rock core from drill core and block samples for strength and deformation testing and for determining the conformance of the test specimen dimensions with tolerances established by this practice. Cubical, rectangular, or other shapes are not covered by this practice. However, some of the information contained with in this practice and in standard Test Method C 170 may still be of use to preparing other test specimen shapes.

1.2 Rock is a complex engineering material that can vary greatly as a function of lithology, stress history, weathering, moisture content and chemistry, and other natural geologic processes. As such, it is not always possible to obtain or prepare rock core specimens that satisfy the desirable tolerances given in this practice. Most commonly, this situation presents itself with weaker, more porous, and poorly cemented rock types and rock types containing significant or weak (or both) structural features. For these and other rock types which are difficult to prepare, all reasonable efforts shall be made to prepare a specimen in accordance with this practice and for the intended test procedure. However, when it has been determined by trial that this is not possible, prepare the rock specimen to the closest tolerances practicable and consider this to be the best effort (Note 1) and report it as such and if allowable or necessary for the intended test, capping the ends of the specimen as discussed in this practice is permitted.

Note 1Best effort in surface preparation refers to the use of a well-maintained surface grinder, lathe or lapping machine by an experienced operator in which a reasonable number of attempts has been made to meet the tolerances required in this procedure.

1.3 This practices covers some, but not all of the curatorial issues that should be implemented. For curatorial issues that should be followed before and during specimen preparation refer to Practices D 5079 and to the specific test standards in section 2.1 for which the specimens are being prepared.

1.4 This practice also prescribes tolerance checks on the length-to-diameter ratio, straightness of the elements on the cylindrical surface, the flatness of the end bearing surfaces, and the perpendicularity of the end surfaces with the axis of the core.

1.5 The requirement for specifying the moisture condition of the test specimen is also stated. However, the requirements in the specific test standards in section 2.1 should be followed too.

1.6 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D 6026 , unless superseded by this standard.

1.6.1 The practices/procedures used to specify how data are collected/recorded and calculated in this standard are regarded as the industry standard. In addition, they are representative of the significant digits that generally should be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user s objectives; and it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of this standard to consider significant digits used in analysis methods for engineering design.

1.7 Units The dimensional values stated in either inch-pound units or SI units are to be regarded as standard, such as 4 to 12 in. or 100 to 300 mm. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard. (Note, when mass measurements are added to determine densities or unit weights, add the following.)

1.7.1 Only the SI units are used for mass determinations, calculations and reported results. However, the use of balances or scales recording pounds of mass (lbm) shall not be regarded as nonconformance with this standard.

1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

1.9 These practices offer a set of instructions for performing one or more specific operations. This document cannot replace education or experience and should be used in conjunction with professional judgement. Not all aspects of this practice may be applicable in all circumstances. This ASTM standard is not intended to represent or replace the standard of care by which the adequacy of a given professional service must be judged, nor should this document be applied without consideration of a project's many unique aspects. The word standard in the title of this document means only that the document has been approved through the ASTM consensus process.


2. Referenced Documents (purchase separately) The documents listed below are referenced within the subject standard but are not provided as part of the standard.

ASTM Standards

C170 Test Method for Compressive Strength of Dimension Stone

C617 Practice for Capping Cylindrical Concrete Specimens

D653 Terminology Relating to Soil, Rock, and Contained Fluids

D2113 Practice for Rock Core Drilling and Sampling of Rock for Site Investigation

D2216 Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass

D2936 Test Method for Direct Tensile Strength of Intact Rock Core Specimens

D3740 Practice for Minimum Requirements for Agencies Engaged in Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction

D5079 Practices for Preserving and Transporting Rock Core Samples

D6026 Practice for Using Significant Digits in Geotechnical Data

D7012 Test Method for Compressive Strength and Elastic Moduli of Intact Rock Core Specimens under Varying States of Stress and Temperatures

D7070 Test Methods for Creep of Rock Core Under Constant Stress and Temperature


Keywords

conformance; core; diameter; dimensional tolerances; dimensions; length; rock; specimen preparation (for testing); specimen shape; specimen size; Conformance/conformity assessment; Diameter; Dimensions; Length; Rock materials/properties/analysis; Shallow depth test; Specimen preparation (for testing)--rock; Surface analysis--soil/rock/related materials; Tolerances--soil/rock/related material;


ICS Code

ICS Number Code 93.020 (Earth works. Excavations. Foundation construction. Underground works)


DOI: 10.1520/D4543-08

ASTM International is a member of CrossRef.

ASTM D4543

This book also exists in the following packages...

Year Publisher Title Annual Price
VAR
ASTM
[+] $1,373.22 Buy
VAR
ASTM
[+] $10,801.41 Buy
VAR
ASTM
[+] $5,812.65 Buy

Subscription Information

MADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

Some features of MADCAD.com ASTM Standards Subscriptions are:

- Online access: With MADCAD.com’ s web based subscription service no downloads or installations are required. Access ASTM Standards from any browser on your computer, tablet or smart phone.

- Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.

 

For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

About ASTM

ASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide.

X