Cart (0)
  • No items in cart.
Total
$0
There is a technical issue about last added item. You can click "Report to us" button to let us know and we resolve the issue and return back to you or you can continue without last item via click to continue button.
Search book title
Enter keywords for book title search
Search book content
Enter keywords for book content search
Filters:
FORMAT
BOOKS
PACKAGES
EDITION
to
PUBLISHER
(1)
(317)
(572)
(43)
(234)
(969)
(643)
(1945)
(64)
(91921)
(54)
(535)
(117)
(31)
(20)
(19)
(92811)
(3)
(17)
(1)
(351)
(300)
(6023)
(239)
(16)
(5)
(1621)
(16)
(18)
(28)
(4)
 
(6)
(7)
(115)
(3)
(57)
(5)
(5)
(1)
(1)
(2)
(23)
(26)
(27)
(13)
(61)
(24)
(22)
(7)
(8)
(20)
(1)
(3)
(50)
(6)
(31)
CONTENT TYPE
 Act
 Admin Code
 Announcements
 Bill
 Book
 CADD File
 CAN
 CEU
 Charter
 Checklist
 City Code
 Code
 Commentary
 Comprehensive Plan
 Conference Paper
 County Code
 Course
 DHS Documents
 Document
 Errata
 Executive Regulation
 Federal Guideline
 Firm Content
 Guideline
 Handbook
 Interpretation
 Journal
 Land Use and Development
 Law
 Legislative Rule
 Local Amendment
 Local Code
 Local Document
 Local Regulation
 Local Standards
 Manual
 Model Code
 Model Standard
 Notice
 Ordinance
 Other
 Paperback
 PASS
 Periodicals
 PIN
 Plan
 Policy
 Product
 Program
 Provisions
 Requirements
 Revisions
 Rules & Regulations
 Standards
 State Amendment
 State Code
 State Manual
 State Plan
 State Standards
 Statute
 Study Guide
 Supplement
 Technical Bulletin
 All
  • ASTM
    D276-12 Standard Test Methods for Identification of Fibers in Textiles
    Edition: 2012
    $103.58
    Unlimited Users per year

Description of ASTM-D276 2012

ASTM D276-12

Active Standard: Standard Test Methods for Identification of Fibers in Textiles




ASTM D276

Scope

1.1 These test methods cover the identification of the following textile fibers used commercially in the United States:

Acetate (secondary) Nylon
Acrylic Nytril
Anidex Olefin
Aramid Polycarbonate
Asbestos Polyester
Cotton Ramie
Cuprammonium rayon Rayon (viscose)
Flax Saran
Fluorocarbon Silk
Glass Spandex
Hemp Triacetate
Jute Vinal
Lycocell Vinyon
Modacrylic Wool
Novoloid

1.2 Man-made fibers are listed in 1.1 under the generic names approved by the Federal Trade Commission and listed in Terminology D123, Annex A1 (except for fluorocarbon and polycarbonate). Many of the generic classes of man-made fibers are produced by several manufacturers and sold under various trademark names as follows (Note 1):

Acetate Acele®, Aviscon®, Celanese®, Chromspun®, Estron®
Acrylic Acrilan®, Courtelle®, Creslan®, Dralon®, Orlon®, Zefran®
Anidex Anim/8®
Aramid Kevlar®, Nomex®, Technora®, TeijinConex®, Twaron®
Cuprammonium Bemberg®
Fluorocarbon Teflon®
Glass Fiberglas®, Garan®, Modiglass®, PPG®, Ultrastrand®
Lyocell Tencel®
Modacrylic Dynel®, Kanecaron®, Monsanto SEF®, Verel®
Novoloid Kynol®
Polyamide
(Nylon) 6 Caprolan®,Enka®, Perlon®, Zefran®, Enkalon®
Polyamide
(Nylon) 6, 6 Antron®, Blue C®, Cantrece®, Celanese Phillips®, Enka®Nylon
Polyamide
(Nylon) (other) Rilsan®(nylon 11), Qiana®, StanylEnka®,(Nylon 4,6)
Nytril Darvan®
Olefin Durel®, Herculon®, Marvess®, Polycrest®
Polyester Avlin®, Beaunit®, Blue C®, Dacron®, Encron®, Fortrel®, Kodel®, Quintess®, Spectran®, Trevira®, Vyoron®, Zephran®, Diolen®, Vectran®
Rayon Avril®, Avisco®, Dynacor®, Enka®, Fiber 700®, Fibro®, Nupron®, Rayflex®, Suprenka®, Tyrex®, Tyron®, Cordenka®
Saran Enjay®, Saran®
Spandex Glospun®, Lycra®, Numa®, Unel®
Triacetate Arnel®
Vinyon Avisco®, Clevyl®, Rhovyl®, Thermovyl®, Volpex®

Note 1—The list of trademarks in 1.2 contains only examples and does not include all brands produced in the United States or abroad and imported for sale in the United States. The list does not include examples of fibers from two (or more) generic classes of polymers spun into a single filament. Additional information on fiber types and trademarks is given in Refs (1, 2, and 3).

1.3 Most manufacturers offer a variety of fiber types of a specific generic class. Differences in tenacity, linear density, bulkiness, or the presence of inert delustrants normally do not interfere with analytic tests, but chemical modifications (for such purposes as increased dyeability with certain dyestuffs) may affect the infrared spectra and some of the physical properties, particularly the melting point. Many generic classes of fibers are sold with a variety of cross-section shapes designed for specific purposes. These differences will be evident upon microscopical examination of the fiber and may interfere with the measurements of refractive indices and birefringence.

1.4 Microscopical examination is indispensable for positive identification of the several types of cellulosic and animal fibers, because the infrared spectra and solubilities will not distinguish between species. Procedures for microscopic identification are published in AATCC Method 20 and in References (4-12).

1.5 Analyses by infrared spectroscopy and solubility relationships are the preferred methods for identifying man-made fibers. The analysis scheme based on solubility is very reliable. The infrared technique is a useful adjunct to the solubility test method. The other methods, especially microscopical examination are generally not suitable for positive identification of most man-made fibers and are useful primarily to support solubility and infrared spectra identifications.

1.6 These test methods include the following sections:

Section
Scope 1
Referenced Documents 2
Terminology 3
Summary of Test Methods 4
Significance and Use 5
Sampling, Selection, Preparation and Number of Specimens 6
Reference Standards 7
Purity of Reagents 8
Fiber Identification by
Microscopic Examination 9,10
Solubility Relationships 11-16
Infrared Spectroscopy 17-23
Physical Properties to Confirm Identification
Density 24-27
Melting Point 28-33
Birefringence by Difference of 34 and 35
Refractive Indices

1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. See Note 3.

Keywords

0 Animal fibers; Animal hair; Archimedes method; Bast and leaf fibers/products; Birefringence; Cotton fabrics/fibers; Fiber analysis--textiles; Fiber density; Fisher-Johns apparatus; Identification; Infrared (IR) analysis; Infrared spectroscopy; Man-made textile fibers; Melting point; Microscopic examination--textiles; Refractive index; Silk; Solubility; Textile fibers; Textile fibers--bast and leaf; Wool and wool top


ICS Code

ICS Number Code 59.060.01 (Textile fibres in general)


DOI: 10.1520/D0276-12

The following editions for this book are also available...

This book also exists in the following packages...

Year Publisher Title Annual Price
VAR
ASTM
[+] $1,144.52 Buy
VAR
ASTM
[+] $1,617.04 Buy

Subscription Information

MADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

Some features of MADCAD.com ASTM Standards Subscriptions are:

- Online access: With MADCAD.com’ s web based subscription service no downloads or installations are required. Access ASTM Standards from any browser on your computer, tablet or smart phone.

- Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.

 

For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

About ASTM

ASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide.

X