Cart (0)
  • No items in cart.
Subtotal
$0
There is a technical issue about last added item. You can click "Report to us" button to let us know and we resolve the issue and return back to you or you can continue without last item via click to continue button.
Search book title
Enter keywords for book title search
Search book content
Enter keywords for book content search
Filters:
FORMAT
BOOKS
PACKAGES
EDITION
to
PUBLISHER
(1)
(316)
(569)
(43)
(234)
(969)
(643)
(1935)
(64)
(91921)
(54)
(535)
(117)
(28)
(20)
(19)
(92193)
(3)
(17)
(1)
(351)
(298)
(6023)
(239)
(16)
(5)
(1619)
(16)
(18)
(28)
(4)
 
(6)
(7)
(115)
(3)
(57)
(5)
(5)
(1)
(1)
(2)
(23)
(26)
(27)
(13)
(61)
(24)
(22)
(7)
(8)
(20)
(1)
(3)
(50)
(6)
(31)
CONTENT TYPE
 Act
 Admin Code
 Announcements
 Bill
 Book
 CADD File
 CAN
 CEU
 Charter
 Checklist
 City Code
 Code
 Commentary
 Comprehensive Plan
 Conference Paper
 County Code
 Course
 DHS Documents
 Document
 Errata
 Executive Regulation
 Federal Guideline
 Firm Content
 Guideline
 Handbook
 Interpretation
 Journal
 Land Use and Development
 Law
 Legislative Rule
 Local Amendment
 Local Code
 Local Document
 Local Regulation
 Local Standards
 Manual
 Model Code
 Model Standard
 Notice
 Ordinance
 Other
 Paperback
 PASS
 Periodicals
 PIN
 Plan
 Policy
 Product
 Program
 Provisions
 Requirements
 Revisions
 Rules & Regulations
 Standards
 State Amendment
 State Code
 State Manual
 State Plan
 State Standards
 Statute
 Study Guide
 Supplement
 Technical Bulletin
 All
  • ASTM
    C393/C393M-11e1 Standard Test Method for Core Shear Properties of Sandwich Constructions by Beam Flexure
    Edition: 2011
    $93.60
    Unlimited Users per year

Description of ASTM-C393 2011

ASTM C393 / C393M - 11e1

Standard Test Method for Core Shear Properties of Sandwich Constructions by Beam Flexure

Active Standard ASTM C393 / C393M | Developed by Subcommittee: D30.09

Book of Standards Volume: 15.03




ASTM C393 / C393M

Significance and Use

Flexure tests on flat sandwich construction may be conducted to determine the sandwich flexural stiffness, the core shear strength and shear modulus, or the facings compressive and tensile strengths. Tests to evaluate core shear strength may also be used to evaluate core-to-facing bonds.

This test method is limited to obtaining the core shear strength or core-to-facing shear strength and the stiffness of the sandwich beam, and to obtaining load-deflection data for use in calculating sandwich beam flexural and shear stiffness using Practice D7250/D7250M .

Note 1Core shear strength and shear modulus are best determined in accordance with Test Method C273 provided bare core material is available.

Facing strength is best determined in accordance with Test Method D7249/D7249M .

Practice D7250/D7250M covers the determination of sandwich flexural and shear stiffness and core shear modulus using calculations involving measured deflections of sandwich flexure specimens.

This test method can be used to produce core shear strength and core-to-facing shear strength data for structural design allowables, material specifications, and research and development applications; it may also be used as a quality control test for bonded sandwich panels.

Factors that influence the shear strength and shall therefore be reported include the following: facing material, core material, adhesive material, methods of material fabrication, core geometry (cell size), core density, adhesive thickness, specimen geometry, specimen preparation, specimen conditioning, environment of testing, specimen alignment, loading procedure, speed of testing, and adhesive void content. Further, core-to-facing strength may be different between precured/bonded and co-cured facings in sandwich panels with the same core and facing material.

Note 2Concentrated loads on beams with thin facings and low density cores can produce results that are difficult to interpret, especially close to the failure point. Wider load pads with rubber pads may assist in distributing the loads.

1. Scope

1.1 This test method covers determination of the core shear properties of flat sandwich constructions subjected to flexure in such a manner that the applied moments produce curvature of the sandwich facing planes. Permissible core material forms include those with continuous bonding surfaces (such as balsa wood and foams) as well as those with discontinuous bonding surfaces (such as honeycomb).

1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.

1.2.1 Within the text the inch-pound units are shown in brackets.

1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.


2. Referenced Documents (purchase separately) The documents listed below are referenced within the subject standard but are not provided as part of the standard.

ASTM Standards

C273 Test Method for Shear Properties of Sandwich Core Materials

C274 Terminology of Structural Sandwich Constructions

D883 Terminology Relating to Plastics

D3878 Terminology for Composite Materials

D5229/D5229M Test Method for Moisture Absorption Properties and Equilibrium Conditioning of Polymer Matrix Composite Materials

D7249/D7249M Test Method for Facing Properties of Sandwich Constructions by Long Beam Flexure

D7250/D7250M Practice for Determining Sandwich Beam Flexural and Shear Stiffness

E4 Practices for Force Verification of Testing Machines

E6 Terminology Relating to Methods of Mechanical Testing

E122 Practice for Calculating Sample Size to Estimate, With Specified Precision, the Average for a Characteristic of a Lot or Process

E177 Practice for Use of the Terms Precision and Bias in ASTM Test Methods

E456 Terminology Relating to Quality and Statistics

E1309 Guide for Identification of Fiber-Reinforced Polymer-Matrix Composite Materials in Databases

E1434 Guide for Recording Mechanical Test Data of Fiber-Reinforced Composite Materials in Databases


Keywords

bending stress; core modulus; core stress; facing stress; sandwich construction; sandwich deflection; shear stress;


ICS Code

ICS Number Code 83.120 (Reinforced plastics)


DOI: 10.1520/C0393_C0393M-11E01

ASTM International is a member of CrossRef.

ASTM C393 / C393M

This book also exists in the following packages...

Year Publisher Title Annual Price
VAR
ASTM
[+] $1,144.52 Buy
VAR
ASTM
[+] $7,461.55 Buy
VAR
ASTM
[+] $3,560.85 Buy

Subscription Information

MADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

Some features of MADCAD.com ASTM Standards Subscriptions are:

- Online access: With MADCAD.com’ s web based subscription service no downloads or installations are required. Access ASTM Standards from any browser on your computer, tablet or smart phone.

- Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.

 

For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

About ASTM

ASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide.

X