Cart (0)
  • No items in cart.
Total
$0
There is a technical issue about last added item. You can click "Report to us" button to let us know and we resolve the issue and return back to you or you can continue without last item via click to continue button.
Search book title
Enter keywords for book title search
Search book content
Enter keywords for book content search
Filters:
FORMAT
BOOKS
PACKAGES
EDITION
to
PUBLISHER
(1)
(317)
(572)
(43)
(234)
(969)
(643)
(2114)
(64)
(92448)
(54)
(535)
(117)
(31)
(20)
(19)
(92811)
(3)
(17)
(1)
(351)
(300)
(6023)
(239)
(16)
(5)
(1621)
(16)
(18)
(28)
(4)
 
(6)
(7)
(115)
(3)
(57)
(5)
(5)
(1)
(1)
(2)
(23)
(26)
(27)
(13)
(61)
(24)
(22)
(7)
(8)
(20)
(1)
(3)
(50)
(6)
(31)
CONTENT TYPE
 Act
 Admin Code
 Announcements
 Bill
 Book
 CADD File
 CAN
 CEU
 Charter
 Checklist
 City Code
 Code
 Commentary
 Comprehensive Plan
 Conference Paper
 County Code
 Course
 DHS Documents
 Document
 Errata
 Executive Regulation
 Federal Guideline
 Firm Content
 Guideline
 Handbook
 Interpretation
 Journal
 Land Use and Development
 Law
 Legislative Rule
 Local Amendment
 Local Code
 Local Document
 Local Regulation
 Local Standards
 Manual
 Model Code
 Model Standard
 Notice
 Ordinance
 Other
 Paperback
 PASS
 Periodicals
 PIN
 Plan
 Policy
 Product
 Program
 Provisions
 Requirements
 Revisions
 Rules & Regulations
 Standards
 State Amendment
 State Code
 State Manual
 State Plan
 State Standards
 Statute
 Study Guide
 Supplement
 Technical Bulletin
 All
  • ASTM
    C1239-13 Standard Practice for Reporting Uniaxial Strength Data and Estimating Weibull Distribution Parameters for Advanced Ceramics
    Edition: 2013
    $103.58
    Unlimited Users per year

Description of ASTM-C1239 2013

ASTM C1239 - 13

Standard Practice for Reporting Uniaxial Strength Data and Estimating Weibull Distribution Parameters for Advanced Ceramics

Active Standard ASTM C1239 | Developed by Subcommittee: C28.01

Book of Standards Volume: 15.01




ASTM C1239

Significance and Use

5.1 Advanced ceramics usually display a linear stress-strain behavior to failure. Lack of ductility combined with flaws that have various sizes and orientations leads to scatter in failure strength. Strength is not a deterministic property but instead reflects an intrinsic fracture toughness and a distribution (size and orientation) of flaws present in the material. This practice is applicable to brittle monolithic ceramics that fail as a result of catastrophic propagation of flaws present in the material. This practice is also applicable to composite ceramics that do not exhibit any appreciable bilinear or nonlinear deformation behavior. In addition, the composite must contain a sufficient quantity of uniformly distributed reinforcements such that the material is effectively homogeneous. Whisker-toughened ceramic composites may be representative of this type of material.

5.2 Two- and three-parameter formulations exist for the Weibull distribution. This practice is restricted to the two-parameter formulation. An objective of this practice is to obtain point estimates of the unknown parameters by using well-defined functions that incorporate the failure data. These functions are referred to as estimators. It is desirable that an estimator be consistent and efficient. In addition, the estimator should produce unique, unbiased estimates of the distribution parameters (6) . Different types of estimators exist, including moment estimators, least-squares estimators, and maximum likelihood estimators. This practice details the use of maximum likelihood estimators due to the efficiency and the ease of application when censored failure populations are encountered.

5.3 Tensile and flexural test specimens are the most commonly used test configurations for advanced ceramics. The observed strength values are dependent on test specimen size and geometry. Parameter estimates can be computed for a given test specimen geometry ( m ^ , ? ^ ? ), but it is suggested that the parameter estimates be transformed and reported as material-specific parameters ( m ^ , ? ^ 0 ). In addition, different flaw distributions (for example, failures due to inclusions or machining damage) may be observed, and each will have its own strength distribution parameters. The procedure for transforming parameter estimates for typical test specimen geometries and flaw distributions is outlined in 8.6 .

5.4 Many factors affect the estimates of the distribution parameters. The total number of test specimens plays a significant role. Initially, the uncertainty associated with parameter estimates decreases significantly as the number of test specimens increases. However, a point of diminishing returns is reached when the cost of performing additional strength tests may not be justified. This suggests that a practical number of strength tests should be performed to obtain a desired level of confidence associated with a parameter estimate. The number of test specimens needed depends on the precision required in the resulting parameter estimate. Details relating to the computation of confidence bounds (directly related to the precision of the estimate) are presented in 9.3 and 9.4 .

1. Scope

1.1 This practice covers the evaluation and reporting of uniaxial strength data and the estimation of Weibull probability distribution parameters for advanced ceramics that fail in a brittle fashion (see Fig. 1 ). The estimated Weibull distribution parameters are used for statistical comparison of the relative quality of two or more test data sets and for the prediction of the probability of failure (or, alternatively, the fracture strength) for a structure of interest. In addition, this practice encourages the integration of mechanical property data and fractographic analysis.


FIG. 1 Example of Weibull Plot of Strength Data

1.2 The failure strength of advanced ceramics is treated as a continuous random variable determined by the flaw population. Typically, a number of test specimens with well-defined geometry are failed under isothermal, well-defined displacement and/or force-application conditions. The force at which each test specimen fails is recorded. The resulting failure stress data are used to obtain Weibull parameter estimates associated with the underlying flaw population distribution.

1.3 This practice is restricted to the assumption that the distribution underlying the failure strengths is the two-parameter Weibull distribution with size scaling. Furthermore, this practice is restricted to test specimens (tensile, flexural, pressurized ring, etc.) that are primarily subjected to uniaxial stress states. The practice also assumes that the flaw population is stable with time and that no slow crack growth is occurring.

1.4 The practice outlines methods to correct for bias errors in the estimated Weibull parameters and to calculate confidence bounds on those estimates from data sets where all failures originate from a single flaw population (that is, a single failure mode). In samples where failures originate from multiple independent flaw populations (for example, competing failure modes), the methods outlined in Section 9 for bias correction and confidence bounds are not applicable.

1.5 This practice includes the following:

Section

Scope

1

Referenced Documents

2

Terminology

3

Summary of Practice

4

Significance and Use

5

Interferences

6

Outlying Observations

7

Maximum Likelihood Parameter Estimators for Competing Flaw Distributions

8

Unbiasing Factors and Confidence Bounds

9

Fractography

10

Examples

11

Keywords

12

Computer Algorithm MAXL

Appendix X1

Test Specimens with Unidentified Fracture Origins

Appendix X2


1.6 The values stated in SI units are to be regarded as the standard per IEEE/ASTM?SI?10.


2. Referenced Documents (purchase separately) The documents listed below are referenced within the subject standard but are not provided as part of the standard.

ASTM Standards

C1145 Terminology of Advanced Ceramics

C1322 Practice for Fractography and Characterization of Fracture Origins in Advanced Ceramics

E6 Terminology Relating to Methods of Mechanical Testing

E178 Practice for Dealing With Outlying Observations

E456 Terminology Relating to Quality and Statistics

IEEE/ASTM?SI?10 American National Standard for Use of the International System of Units (SI): The Modern Metric System


Keywords

advanced ceramics; censored data; confidence bounds; fractography; fracture origin; maximum likelihood; strength; unbiasing factors; Weibull characteristic strength; Weibull modulus; Weibull scale parameter; Weibull statistics;


ICS Code

ICS Number Code 81.060.99 (Other standards related to ceramics)


DOI: 10.1520/C1239

ASTM International is a member of CrossRef.

ASTM C1239

The following editions for this book are also available...

This book also exists in the following packages...

Year Publisher Title Annual Price
VAR
ASTM
[+] $1,011.53 Buy
VAR
ASTM
[+] $7,461.55 Buy

Subscription Information

MADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

Some features of MADCAD.com ASTM Standards Subscriptions are:

- Online access: With MADCAD.com’ s web based subscription service no downloads or installations are required. Access ASTM Standards from any browser on your computer, tablet or smart phone.

- Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.

 

For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

About ASTM

ASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide.

X