Cart (0)
  • No items in cart.
Total
$0
There is a technical issue about last added item. You can click "Report to us" button to let us know and we resolve the issue and return back to you or you can continue without last item via click to continue button.
Search book title
Enter keywords for book title search
Search book content
Enter keywords for book content search
Filters:
FORMAT
BOOKS
PACKAGES
EDITION
to
PUBLISHER
(1)
(317)
(572)
(43)
(234)
(969)
(643)
(2114)
(64)
(92448)
(54)
(535)
(117)
(31)
(20)
(19)
(92811)
(3)
(17)
(1)
(351)
(300)
(6023)
(239)
(16)
(5)
(1621)
(16)
(18)
(28)
(4)
 
(6)
(7)
(115)
(3)
(57)
(5)
(5)
(1)
(1)
(2)
(23)
(26)
(27)
(13)
(61)
(24)
(22)
(7)
(8)
(20)
(1)
(3)
(50)
(6)
(31)
CONTENT TYPE
 Act
 Admin Code
 Announcements
 Bill
 Book
 CADD File
 CAN
 CEU
 Charter
 Checklist
 City Code
 Code
 Commentary
 Comprehensive Plan
 Conference Paper
 County Code
 Course
 DHS Documents
 Document
 Errata
 Executive Regulation
 Federal Guideline
 Firm Content
 Guideline
 Handbook
 Interpretation
 Journal
 Land Use and Development
 Law
 Legislative Rule
 Local Amendment
 Local Code
 Local Document
 Local Regulation
 Local Standards
 Manual
 Model Code
 Model Standard
 Notice
 Ordinance
 Other
 Paperback
 PASS
 Periodicals
 PIN
 Plan
 Policy
 Product
 Program
 Provisions
 Requirements
 Revisions
 Rules & Regulations
 Standards
 State Amendment
 State Code
 State Manual
 State Plan
 State Standards
 Statute
 Study Guide
 Supplement
 Technical Bulletin
 All
  • ASTM
    C1207-10 Standard Test Method for Nondestructive Assay of Plutonium in Scrap and Waste by Passive Neutron Coincidence Counting
    Edition: 2010
    $103.58
    Unlimited Users per year

Description of ASTM-C1207 2010

ASTM C1207 - 10

Standard Test Method for Nondestructive Assay of Plutonium in Scrap and Waste by Passive Neutron Coincidence Counting

Active Standard ASTM C1207 | Developed by Subcommittee: C26.10

Book of Standards Volume: 12.01



Translated Standard: Russian
more info


ASTM C1207

Significance and Use

This test method is useful for determining the plutonium content of scrap and waste in containers ranging from small cans with volumes of the order of a mL to crates and boxes of several thousand liters in volume. A common application would be to 208-L (55-gal) drums. Total Pu content ranges from 10 mg to 6 kg (1) . The upper limit may be restricted depending on specific matrix, calibration material, criticality safety, or counting equipment considerations.

This test method is applicable for U.S. Department of Energy shipper/receiver confirmatory measurements (9) , nuclear material diversion detection, and International Atomic Energy Agency attributes measurements (10) .

This test method should be used in conjunction with a scrap and waste management plan that segregates scrap and waste assay items into material categories according to some or all of the following criteria: bulk density, the chemical forms of the plutonium and the matrix, americium to plutonium isotopic ratio, and hydrogen content. Packaging for each category should be uniform with respect to size, shape, and composition of the container. Each material category might require calibration standards and may have different Pu mass limits.

Bias in passive neutron coincidence measurements is related to item size and density, the homogeneity and composition of the matrix, and the quantity and distribution of the nuclear material. The precision of the measurement results is related to the quantity of nuclear material, the ( ? ,n) reaction rate, and the count time of the measurement.

For both benign matrix and matrix specific measurements, the method assumes the calibration reference materials match the items to be measured with respect to the homogeneity and composition of the matrix, the neutron moderator and absorber content, and the quantity of nuclear material, to the extent they affect the measurement.

Measurements of smaller containers containing scrap and waste are generally more accurate than measurements of larger items.

It is recommended that where feasible measurements be made on items with homogeneous contents. Heterogeneity in the distribution of nuclear material, neutron moderators, and neutron absorbers have the potential to cause biased results.

The coincident neutron production rates measured by this test method are related to the mass of the even number isotopes of plutonium. If the relative abundances of these isotopes are not accurately known, biases in the total Pu assay value will result.

Typical count times are in the range of 300 to 3600 s.

Reliable results from the application of this method require training of the personnel who package the scrap and waste prior to measurement and of personnel who perform the measurements. Training guidance is available from ANSI 15.20, Guides , C1009 , C1068 , and C1490 .

1. Scope

1.1 This test method describes the nondestructive assay of scrap or waste for plutonium content using passive thermal-neutron coincidence counting. This test method provides rapid results and can be applied to a variety of carefully sorted materials in containers as large as several thousand liters in volume. The test method applies to measurements of 238 Pu, 240 Pu, and 242 Pu and has been used to assay items whose total plutonium content ranges from 10 mg to 6 kg (1) .

1.2 This test method requires knowledge of the relative abundances of the Pu isotopes to determine the total Pu mass (Test Method C1030 ).

1.3 This test method may not be applicable to the assay of scrap or waste containing other spontaneously fissioning nuclides.

1.3.1 This test method may give biased results for measurements of containers that include large amounts of hydrogenous materials.

1.3.2 The techniques described in this test method have been applied to materials other than scrap and waste (2, 3) .

1.4 This test method assumes the use of shift-register-based coincidence technology (4) .

1.5 Several other techniques that are often encountered in association with passive neutron coincidence counting exist These include neutron multiplicity counting ( 5, 6 , Test Method C1500 ), add-a-source analysis for matrix correction (7) , flux probes also for matrix compensation, cosmic-ray rejection (8) to improve precision close to the detection limit, and alternative data collection electronics such as list mode data acquisition. Passive neutron coincidence counting may also be combined with certain active interrogation schemes as in Test Methods C1316 and C1493 . Discussions of these established techniques are not included in this method.

1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.


2. Referenced Documents (purchase separately) The documents listed below are referenced within the subject standard but are not provided as part of the standard.

ASTM Standards

C986 Guide for Developing Training Programs in the Nuclear Fuel Cycle

C1009 Guide for Establishing a Quality Assurance Program for Analytical Chemistry Laboratories Within the Nuclear Industry

C1030 Test Method for Determination of Plutonium Isotopic Composition by Gamma-Ray Spectrometry

C1068 Guide for Qualification of Measurement Methods by a Laboratory Within the Nuclear Industry

C1128 Guide for Preparation of Working Reference Materials for Use in Analysis of Nuclear Fuel Cycle Materials

C1133 Test Method for Nondestructive Assay of Special Nuclear Material in Low-Density Scrap and Waste by Segmented Passive Gamma-Ray Scanning

C1210 Guide for Establishing a Measurement System Quality Control Program for Analytical Chemistry Laboratories Within the Nuclear Industry

C1316 Test Method for Nondestructive Assay of Nuclear Material in Scrap and Waste by Passive-Active Neutron Counting Using 252Cf Shuffler

C1458 Test Method for Nondestructive Assay of Plutonium, Tritium and 241Am by Calorimetric Assay

C1490 Guide for the Selection, Training and Qualification of Nondestructive Assay (NDA) Personnel

C1493 Test Method for Non-Destructive Assay of Nuclear Material in Waste by Passive and Active Neutron Counting Using a Differential Die-Away System

C1500 Test Method for Nondestructive Assay of Plutonium by Passive Neutron Multiplicity Counting

C1592 Guide for Nondestructive Assay Measurements

C1673 Terminology of C26.10 Nondestructive Assay Methods

ANSI Standards

ANSI15.36 Nondestructive Assay Measurement Control and Assurance

Keywords

nondestructive assay; passive neutron coincidence counting; plutonium; scrap and waste; Coincidence counting; Electrical measurements; Neutron counting; Nondestructive evaluation (NDE)--nuclear applications; Nuclear scrap and waste materials; Plutonium--nuclear scrap and waste materials; Thermal-neutron coincidence counting;


ICS Code

ICS Number Code 13.030.30 (Special wastes)


DOI: 10.1520/C1207-10

ASTM International is a member of CrossRef.

ASTM C1207

The following editions for this book are also available...

This book also exists in the following packages...

Year Publisher Title Annual Price
VAR
ASTM
[+] $1,152.58 Buy
VAR
ASTM
[+] $1,737.94 Buy
ASTM
[+] $49,039.30 Buy

Subscription Information

MADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

Some features of MADCAD.com ASTM Standards Subscriptions are:

- Online access: With MADCAD.com’ s web based subscription service no downloads or installations are required. Access ASTM Standards from any browser on your computer, tablet or smart phone.

- Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.

 

For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

About ASTM

ASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide.

X